scholarly journals From Clones to Buds and Branches: The Use of Lung Organoids to Model Branching Morphogenesis Ex Vivo

Author(s):  
Ana Ivonne Vazquez-Armendariz ◽  
Susanne Herold

Three-dimensional (3D) organoid culture systems have rapidly emerged as powerful tools to study organ development and disease. The lung is a complex and highly specialized organ that comprises more than 40 cell types that offer several region-specific roles. During organogenesis, the lung goes through sequential and morphologically distinctive stages to assume its mature form, both structurally and functionally. As branching takes place, multipotent epithelial progenitors at the distal tips of the growing/bifurcating epithelial tubes progressively become lineage-restricted, giving rise to more differentiated and specialized cell types. Although many cellular and molecular mechanisms leading to branching morphogenesis have been explored, deeper understanding of biological processes governing cell-fate decisions and lung patterning is still needed. Given that these distinct processes cannot be easily analyzedin vivo, 3D culture systems have become a valuable platform to study organogenesisin vitro. This minireview focuses on the current lung organoid systems that recapitulate developmental events occurring before and during branching morphogenesis. In addition, we also discuss their limitations and future directions.

Author(s):  
Vikram Sabapathy ◽  
Gabrielle Costlow ◽  
Rajkumar Venkatadri ◽  
Murat Dogan ◽  
Sanjay Kumar ◽  
...  

: The advent of organoids has renewed researcher's interest in in vitro cell culture systems. A wide variety of protocols, primarily utilizing pluripotent stem cells, are under development to improve organoid generation to mimic organ development. The complexity of organoids generated is greatly influenced based on the method used. Understanding the process of kidney organoid formation gives developmental insights into how renal cells form, mature, and interact with the adjacent cells to form specific spatiotemporal structural patterns. This knowledge can bridge the gaps in understanding in vivo renal developmental processes. Evaluating genetic and epigenetic signatures in specialized cell types can help interpret the molecular mechanisms governing cell fate. In addition, development in single-cell RNA sequencing and 3D bioprinting and microfluidic technologies has led to better identification and understanding of a variety of cell types during differentiation and designing of complex structures to mimic the conditions in vivo. While several reviews have highlighted the application of kidney organoids, there is no comprehensive review of various methodologies specifically focusing on the kidney organoids. This review summarizes the updated differentiation methodologies, applications, and challenges associated with kidney organoids. Here we have comprehensively collated all the different variables influencing the organoid generation.


2017 ◽  
Vol 22 (5) ◽  
pp. 583-601 ◽  
Author(s):  
P. Marc D. Watson ◽  
Edel Kavanagh ◽  
Gary Allenby ◽  
Matthew Vassey

Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer’s and Parkinson’s disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell–cell and cell–matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.


2008 ◽  
Vol 67 (2) ◽  
pp. 115-127 ◽  
Author(s):  
James Thorne ◽  
Moray J. Campbell

Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1α,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR.In vitroandin vivodissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells displayde novoand acquired genetic and epigenetic mechanisms of resistance to these actions. Consequently, a range of experimental and clinical options are being developed to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centred therapeutics.


2021 ◽  
Author(s):  
Adedamola Olayanju ◽  
Aline F Miller ◽  
Tahera Ansari ◽  
Christopher E. Goldring

AbstractA major challenge in advancing preclinical studies is the lack of robust in vitro culture systems that fully recapitulate the in vivo scenario together with limited clinical translational to humans. Organoids, as 3-dimensional (3D) self-replicating structures are increasingly being shown as powerful models for ex vivo experimentation in the field of regenerative medicine and drug discovery. Organoid formation requires the use of extracellular matrix (ECM) components to provide a 3D platform. However, the most commonly used ECM, essential for maintaining organoid growth is Matrigel and is derived from a tumorigenic source which limits its translational ability. PeptiGels® which are self-assembling peptide hydrogels present as alternatives to traditional ECM for use in 3D culture systems. Synthetic PeptiGels® are non-toxic, biocompatible, biodegradable and can be tuneable to simulate different tissue microenvironments. In this study, we validated the use of different types of PeptiGels® for porcine hepatic organoid growth. Hepatic organoids were assessed morphologically and using molecular techniques to determine the optimum PeptiGel® formulation. The outcome clearly demonstrated the ability of PeptiGel® to support organoid growth and offer themselves as a technological platform for 3D cultured physiologically and clinically relevant data.


2002 ◽  
Vol 156 (4) ◽  
pp. 689-701 ◽  
Author(s):  
Jennifer A. Zallen ◽  
Yehudit Cohen ◽  
Andrew M. Hudson ◽  
Lynn Cooley ◽  
Eric Wieschaus ◽  
...  

The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 431 ◽  
Author(s):  
Rosa Vitale ◽  
Enrico D'Aniello ◽  
Stefania Gorbi ◽  
Andrea Martella ◽  
Cristoforo Silvestri ◽  
...  

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


2017 ◽  
Vol 216 (10) ◽  
pp. 3405-3422 ◽  
Author(s):  
Vasja Urbančič ◽  
Richard Butler ◽  
Benjamin Richier ◽  
Manuel Peter ◽  
Julia Mason ◽  
...  

Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Dalia Martinez-Marin ◽  
Courtney Jarvis ◽  
Thomas Nelius ◽  
Stéphanie Filleur

Abstract Macrophages have been recognized as the main inflammatory component of the tumor microenvironment. Although often considered as beneficial for tumor growth and disease progression, tumor-associated macrophages have also been shown to be detrimental to the tumor depending on the tumor microenvironment. Therefore, understanding the molecular interactions between macrophages and tumor cells in relation to macrophages functional activities such as phagocytosis is critical for a better comprehension of their tumor-modulating action. Still, the characterization of these molecular mechanisms in vivo remains complicated due to the extraordinary complexity of the tumor microenvironment and the broad range of tumor-associated macrophage functions. Thus, there is an increasing demand for in vitro methodologies to study the role of cell–cell interactions in the tumor microenvironment. In the present study, we have developed live co-cultures of macrophages and human prostate tumor cells to assess the phagocytic activity of macrophages using a combination of Confocal and Nomarski Microscopy. Using this model, we have emphasized that this is a sensitive, measurable, and highly reproducible functional assay. We have also highlighted that this assay can be applied to multiple cancer cell types and used as a selection tool for a variety of different types of phagocytosis agonists. Finally, combining with other studies such as gain/loss of function or signaling studies remains possible. A better understanding of the interactions between tumor cells and macrophages may lead to the identification of new therapeutic targets against cancer.


Sign in / Sign up

Export Citation Format

Share Document