scholarly journals CORO6 Promotes Cell Growth and Invasion of Clear Cell Renal Cell Carcinoma via Activation of WNT Signaling

Author(s):  
Xinjun Wang ◽  
Yiming Xiao ◽  
Si Li ◽  
Zhijian Yan ◽  
Guangcheng Luo

Renal cell carcinoma (RCC) constitutes the most lethal type of genitourinary cancer. Understanding of RCC tumor biology helps to identify novel targets and develop directed treatments for patients with this type of cancer. Analysis from both The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma dataset and our RCC samples demonstrated that the expression level of CORO6 was significantly higher in RCC patients than in normal kidney tissues, and its level was highly associated with tumor stage and grade. Importantly, CORO6 expression level was an independent predictor of tumor metastasis and overall survival in RCC patients. Our cell line data also confirmed that CORO6 knockdown could suppress RCC cell growth as well as cell migration and invasion. The depletion of CORO6 led to cell cycle arrest at the G0/G1 phase and caused cell apoptosis. Further, mechanistic dissection showed that CORO6 mediated RCC cell growth, and cell invasion relied on WNT signaling. Moreover, the in vivo data suggested that CORO6 knockdown indeed suppressed RCC tumor growth. Overall, our study defines the oncogenic role of CORO6 in RCC progression and provides a rationale for developing CORO6-targeted therapies for improved treatment of RCC patients.

2020 ◽  
Vol 29 (4) ◽  
pp. 453-462 ◽  
Author(s):  
Changming Wang ◽  
Chiyuan Piao ◽  
Junlong Liu ◽  
Zhe Zhang ◽  
Yuyan Zhu ◽  
...  

OBJECTIVE: Sirtuins family are defined as class III histone deacetylases (HDACs). Recently, mammalian silent information regulator two 4 (SIRT4) has been reported to be a tumor suppressor gene in multiple cancers. The objective of the present study was to explore the potential role of SIRT4 in clear cell renal cell carcinoma (ccRCC). METHODS: We estimated SIRT4 expression levels in ccRCC and its adjacent non-neoplastic tissue by Western blotting (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and bioinformatics data, the clinical and survival data were also collected and analyzed. In vitro study, ccRCC cell lines were transfected with SIRT4-siRNA or lentivirus to downregulate or overexpress the expression level of SIRT4. Then, the proliferation capacity of tumor cell was assessed by 5-Ethynyl-2’-deoxyuridine (EDU) assay, cell migration and invasion capacity were assessed by Transwell assays. RESULTS: Our results indicated that the expression level of SIRT4 in ccRCC was significantly lower than the corresponding normal tissues (P< 0.001). Meanwhile, bioinformatics data and the result of WB showed that low SIRT4 expression level was obviously involved with poor overall survival and advanced tumor stage in ccRCC patients. Biological experiments demonstrated that overexpression of SIRT4 significantly reduced the proliferation, migration and invasion ability of ccRCC cells. Conversely, downregulation of SIRT4 enhanced the proliferation, migration and invasion ability of ccRCC cells. CONCLUSIONS: These findings support that SIRT4 acts as a tumor suppressor in ccRCC and might be a novel biomarker and new therapeutic target for ccRCC.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4065 ◽  
Author(s):  
Lei Wang ◽  
Zhiqiang Peng ◽  
Kaizhen Wang ◽  
Yijun Qi ◽  
Ying Yang ◽  
...  

Background Clear cell renal cell carcinoma (ccRCC) is the most common and lethal cancer of the adult kidney. However, its pathogenesis has not been fully understood till now, which hinders the therapeutic development of ccRCC. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) was found to be upregulated and play an important role in ccRCC. We aimed to further investigate the underlying mechanisms by which NDUFA4L2 exerted function and its expression level was upregulated. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data were mined to verify the change of NDUFA4L2 expression level in ccRCC tissues. The correlation between expression level of NDUFA4L2 and cell proliferation/apoptosis was explored by Gene Set Enrichment Analysis (GSEA). Protein-protein interaction (PPI) network of NDUFA4L2 was constructed. Biological process and involved pathways of NDUFA4L2 were analyzed by gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The transcription factors (TFs) which can induce the expression of NDUFA4L2 were explored in clinical samples by correlation analysis and its regulation on the expression of NDUFA4L2 was verified by knockdown experiment. Results NDUFA4L2 was verified to be overexpressed in ccRCC tissues and its expression level was increased accordingly as the American Joint Committee on Cancer (AJCC) stage progressed. A high NDUFA4L2 level predicted the poor prognosis of ccRCC patients and correlated with enhanced cell proliferation and anti-apoptosis. NDUFA4L2 may interact with 14 tumor-related proteins, participate in growth and death processes and be involved in ccRCC-related pathways, such as insulin-like growth factor 1 (IGF-1), mammalian target of Rapamycin (mTOR) and phosphoinositide 3 kinase serine/threonine protein kinase (PI3K/AKT). ETS domain-containing protein ELK1 level positively correlated with the level of NDUFA4L2 in ccRCC tissues and ELK1 could regulate the expression of NDUFA4L2 in ccRCC cells. Discussion NDUFA4L2 upregulation was associated with ccRCC malignancy. NDUFA4L2 expression was regulated by ELK1 in ccRCC cells. Our study provided potential mechanisms by which NDUFA4L2 affected ccRCC occurrence and progression.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10149
Author(s):  
Feilong Yang ◽  
Cheng Liu ◽  
Guojiang Zhao ◽  
Liyuan Ge ◽  
Yimeng Song ◽  
...  

Long non-coding RNAs (lncRNAs) have been proved to have an important role in different malignancies including clear cell renal cell carcinoma (ccRCC). However, their role in disease progression is still not clear. The objective of the study was to identify lncRNA-based prognostic biomarkers and further to investigate the role of one lncRNA LINC01234 in progression of ccRCC cells. We found that six adverse prognostic lncRNA biomarkers including LINC01234 were identified in ccRCC patients by bioinformatic analysis using The Cancer Genome Atlas database. LINC01234 knockdown impaired cell proliferation, migration and invasion in vitro as compared to negative control. Furthermore, the epithelial-mesenchymal transition was inhibited after LINC01234 knockdown. Additionally, LINC01234 knockdown impaired hypoxia-inducible factor-2a (HIF-2α) pathways, including a suppression of the expression of HIF-2α, vascular endothelial growth factor A, epidermal growth factor receptor, c-Myc, Cyclin D1 and MET. Together, these datas showed that LINC01234 was likely to regulate the progression of ccRCC by HIF-2α pathways, and LINC01234 was both a promising prognostic biomarker and a potential therapeutic target for ccRCC.


2021 ◽  
pp. 1-10
Author(s):  
Han Wu ◽  
Haixiao Wu ◽  
Peng Sun ◽  
Desheng Zhu ◽  
Min Ma ◽  
...  

<b><i>Objective:</i></b> miR-155-5p as an important microRNA has been extensively studied for its biological functions and mechanisms in various cancers. However, the role and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) remain to be further elucidated. <b><i>Methods:</i></b> Bioinformatics methods were implemented to analyze differentially expressed genes in the cancer genome atlas database. qRT-PCR and Western blot were employed to detect the expression of miR-155-5p and paternally expressed gene 3 (PEG3) mRNA as well as protein expression. Cell lines with miR-155-5p knockdown or miR-155-5p/PEG3 co-overexpression were constructed. A series of experiments including the MTT method, wound healing assay, and transwell assay were carried out to detect the proliferation, migration, and invasion of cancer cells in different treatment groups. Bioinformatics analysis and dual-luciferase assay were conducted to confirm the targeting relationship between PEG3 and miR-155-5p in ccRCC. <b><i>Results:</i></b> miR-155-5p was found to be significantly upregulated in ccRCC cells, while PEG3 exhibited significantly low expression. The downregulation of miR-155-5p could inhibit cell proliferation, migration, and invasion of ccRCC. miR-155-5p could inhibit the expression of PEG3. The overexpression of miR-155-5p could promote cell proliferation, migration, and invasion, whereas overexpression of PEG3 could significantly attenuate such effect. Therefore, miR-155-5p may promote cell growth of ccRCC via inhibiting PEG3 expression. <b><i>Conclusion:</i></b> These findings validated the effect of miR-155-5p/PEG3 on ccRCC cells and provided novel potential targets for the prognosis and treatment of patients with ccRCC.


Author(s):  
Wuping Yang ◽  
Kenan Zhang ◽  
Lei Li ◽  
Yawei Xu ◽  
Kaifang Ma ◽  
...  

Abstract Background Emerging evidence confirms that lncRNAs (long non-coding RNAs) are potential biomarkers that play vital roles in tumors. ZNF582-AS1 is a novel lncRNA that serves as a potential prognostic marker of cancers. However, the specific clinical significance and molecular mechanism of ZNF582-AS1 in ccRCC (clear cell renal cell carcinoma) are unclear. Methods Expression level and clinical significance of ZNF582-AS1 were determined by TCGA-KIRC data and qRT-PCR results of 62 ccRCCs. DNA methylation status of ZNF582-AS1 promoter was examined by MSP, MassARRAY methylation and demethylation analysis. Gain-of-function experiments were conducted to investigate the biological roles of ZNF582-AS1 in the phenotype of ccRCC. The subcellular localization of ZNF582-AS1 was detected by RNA FISH. iTRAQ, RNA pull-down and RIP-qRT-PCR were used to identify the downstream targets of ZNF582-AS1. rRNA MeRIP-seq and MeRIP-qRT-PCR were utilized to examine the N(6)-methyladenosine modification status. Western blot and immunohistochemistry assays were used to determine the protein expression level. Results ZNF582-AS1 was downregulated in ccRCC, and decreased ZNF582-AS1 expression was significantly correlated with advanced tumor stage, higher pathological stage, distant metastasis and poor prognosis. Decreased ZNF582-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. ZNF582-AS1 overexpression inhibited cell proliferative, migratory and invasive ability, and increased cell apoptotic rate in vitro and in vivo. Mechanistically, we found that ZNF582-AS1 overexpression suppressed the N(6)-methyladenosine modification of MT-RNR1 by reducing rRNA adenine N(6)-methyltransferase A8K0B9 protein level, resulting in the decrease of MT-RNR1 expression, followed by the inhibition of MT-CO2 protein expression. Furthermore, MT-RNR1 overexpression reversed the decreased MT-CO2 expression and phenotype inhibition of ccRCC induced by increased ZNF582-AS1 expression. Conclusions This study demonstrates for the first time that ZNF582-AS1 functions as a tumor suppressor gene in ccRCC and ZNF582-AS1 may serve as a potential biomarker and therapeutic target of ccRCC.


Oncogene ◽  
2021 ◽  
Author(s):  
Ming-xiao Zhang ◽  
Li-zhen Zhang ◽  
Liang-min Fu ◽  
Hao-hua Yao ◽  
Lei Tan ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Yang ◽  
Xiao-fan Lu ◽  
Peng-cheng Luo ◽  
Jie Zhang

Background. Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), usually is representative of metastatic heterogeneous neoplasm that links with poor prognosis, but the pathogenesis of ccRCC remains unclear. Currently, numerous evidences prove that long noncoding RNAs (lncRNAs) are considered as competing endogenous RNA (ceRNA) to participate in cellular processes of tumors. Therefore, to investigate the underlying mechanisms of ccRCC, the expression profiles of lncRNAs, miRNAs, and mRNAs were downloaded from the Cancer Genome Atlas (TCGA) database. A total of 1526 differentially expressed lncRNAs (DElncRNAs), 54 DEmiRNAs, and 2352 DEmRNAs were identified. To determine the connection of them, all DElncRNAs were input to the miRcode database. The results indicated that 85 DElncRNAs could connect with 9 DEmiRNAs in relation to our study. Then, databases of TargetScan and miRDB were used to search for targeted genes with reference to DEmiRNAs. The results showed that 203 out of 2352 targeted genes were identified in our TCGA set. Subsequently, ceRNA network was constructed according to Cytoscape and the targeted genes were functionally analyzed to elucidate the mechanisms of DEmRNAs. The results of survival analysis and regression analysis indicated that 6 DElncRNAs named COL18A1-AS1, WT1-AS, LINC00443, TCL6, AL356356.1, and SLC25A5-AS1 were significantly correlative with the clinical traits of ccRCC patients and could be served as predictors for ccRCC. Finally, these findings were validated by quantitative RT-PCR (qRT-PCR). Based on these discoveries, we believe that this identified ceRNA network will provide a novel perspective to elucidate ccRCC pathogenesis.


2015 ◽  
Vol 69 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Zhengzuo Sheng ◽  
Yang Liu ◽  
Caipeng Qin ◽  
Zhenhua Liu ◽  
Yeqing Yuan ◽  
...  

OBJECTIVE:To investigate if IgG can be expressed in clear cell renal cell carcinoma (cRCC) , and the expression of IgG is involved in the cancer progression. If IgG expression can serve as a potential target in cancer therapies and be used for judging the prognosis.MATERIALS AND METHODS:By immunohistochemistry, we detected IgG in cRCC tissues(75 cRCC tissues and75 adjacent normal kidney tissues). Immunofluorescence and Western blot was used to detect the IgG in cRCC cell lines (786-0, ACHN and CAKI-I). By RT-PCR, the functional transcript of IgG heavy chain was detected. Knockdown of IgG was to analyze the proliferation, migration and invasion ability by CCK8, Transwell and Matrigel and apoptosis in cRCC cell lines.RESULTS:By immunohistochemistry, we found strong staining of IgG in 66 cases of 75 cRCC tissues and 63 cases of 75 adjacent normal kidney tissues. Immunofluorescence and Western blot was found IgG in cRCC cell lines. Knock-down IgG in cRCC cell lines resulted in significant inhibition of cell proliferation, migration and invasion, and the induction of apoptosis of the 786-0 cells. The immunohistochemistry analysis showed that high IgG expression significantly correlated with the poor differentiation and advanced stage of cRCC.CONCLUSION:IgG was over expressed in cRCC and was involved in the proliferation, migration and invasion of cancer cells. IgG expression may serve as a potential target in cancer therapies and could be used for judging the prognosis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qianwei Xing ◽  
Tengyue Zeng ◽  
Shouyong Liu ◽  
Hong Cheng ◽  
Limin Ma ◽  
...  

Abstract Background The role of glycolysis in tumorigenesis has received increasing attention and multiple glycolysis-related genes (GRGs) have been proven to be associated with tumor metastasis. Hence, we aimed to construct a prognostic signature based on GRGs for clear cell renal cell carcinoma (ccRCC) and to explore its relationships with immune infiltration. Methods Clinical information and RNA-sequencing data of ccRCC were obtained from The Cancer Genome Atlas (TCGA) and ArrayExpress datasets. Key GRGs were finally selected through univariate COX, LASSO and multivariate COX regression analyses. External and internal verifications were further carried out to verify our established signature. Results Finally, 10 GRGs including ANKZF1, CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2, VCAN, FBP1 were selected out and utilized to establish a novel signature. Compared with the low-risk group, ccRCC patients in high-risk groups showed a lower overall survival (OS) rate (P = 5.548Ee-13) and its AUCs based on our established signature were all above 0.70. Univariate/multivariate Cox regression analyses further proved that this signature could serve as an independent prognostic factor (all P < 0.05). Moreover, prognostic nomograms were also created to find out the associations between the established signature, clinical factors and OS for ccRCC in both the TCGA and ArrayExpress cohorts. All results remained consistent after external and internal verification. Besides, nine out of 21 tumor-infiltrating immune cells (TIICs) were highly related to high- and low- risk ccRCC patients stratified by our established signature. Conclusions A novel signature based on 10 prognostic GRGs was successfully established and verified externally and internally for predicting OS of ccRCC, helping clinicians better and more intuitively predict patients’ survival.


Sign in / Sign up

Export Citation Format

Share Document