scholarly journals A Prognostic Ferroptosis-Related lncRNAs Signature Associated With Immune Landscape and Radiotherapy Response in Glioma

Author(s):  
Jianglin Zheng ◽  
Zijie Zhou ◽  
Yue Qiu ◽  
Minjie Wang ◽  
Hao Yu ◽  
...  

Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are implicated in the regulation of tumor cell ferroptosis. However, the prognostic value of ferroptosis-related lncRNAs has never been comprehensively explored in glioma. In this study, the transcriptomic data and clinical information of glioma patients were downloaded from TCGA, CGGA and Rembrandt databases. We identified 24 prognostic ferroptosis-related lncRNAs, 15 of which (SNAI3-AS1, GDNF-AS1, WDFY3-AS2, CPB2-AS1, WAC-AS1, SLC25A21-AS1, ARHGEF26-AS1, LINC00641, LINC00844, MIR155HG, MIR22HG, PVT1, SNHG18, PAXIP1-AS2, and SBF2-AS1) were used to construct a ferroptosis-related lncRNAs signature (FRLS) according to the least absolute shrinkage and selection operator (LASSO) regression. The validity of this FRLS was verified in training (TCGA) and validation (CGGA and Rembrandt) cohorts, respectively. The Kaplan-Meier curves revealed a significant distinction of overall survival (OS) between the high- and low-risk groups. The receiver operating characteristic (ROC) curves exhibited robust prognostic capacity of this FRLS. A nomogram with improved accuracy for predicting OS was established based on independent prognostic factors (FRLS, age, and WHO grade). Besides, patients in the high-risk group had higher immune, stroma, and ESTIMATE scores, lower tumor purity, higher infiltration of immunosuppressive cells, and higher expression of immune checkpoints. Patients in the low-risk group benefited significantly from radiotherapy, while no survival benefit of radiotherapy was observed for those in the high-risk group. In conclusion, we identified the prognostic ferroptosis-related lncRNAs in glioma, and constructed a prognostic signature which was associated with the immune landscape of glioma microenvironment and radiotherapy response.

2021 ◽  
Author(s):  
Yali Zhong ◽  
Xiaobin Luo ◽  
Fubing Yang ◽  
Xinling Song

Abstract Object: Immune related genes play an important role in the process of tumor genesis and development. Therefore, we aim to find the Immune genes which are related to the prognosis of glioma patients, and to explore the infiltration of Immune cells in glioma microenvironment. Methods We downloaded the data of the glioma samples from the CGGA database, and performed batch correction to screen the primary glioma samples for subsequent analysis. Then the ESTIMATE algorithm was used to deal with the Stromal scores and Immune scores of the primary glioma samples, and the difference was analyzed. Then the common Immune related genes (IRGs) were obtained by intersecting with the Immune genes in the ImmPort database. Moreover, we used common IRGs to construct protein-protein interaction (PPI) networks, from which we screened the top 30 genes with high connectivity, and Lasso regression was used to screen the IRGs. Lastly, we obtained the combined genes, which were overlapped both in the top 30 high-connection genes and Lasso regression genes. The final genes were used to construct COX risk prediction models. The accuracy of the model were verified by the TCGA glioma data, and the model genes were analyzed for Immune-related pathways, as well as the Hallmark and KEGG enrichment. Additionally, we used CIBERSOFT algorithm to estimate the Immune cell content of the samples, and analyzed the differences, correlations and survival of the Immune cells in high and low risk groups. Results Firstly, a total of 117 IRGs were obtained from the gene sets, which were overlapped in the data of Stromal score, Immune score and ImmPort database. Secondly, the top 30 genes were selected after the PPI network, and another 26 genes were screened out after the Lasso regression algorithm. And then, six coexist IRGs were obtained from the intersecting sets. Furthermore, the COX risk prediction model was constructed and tested, showing that the overall survival rate of the high-risk group was about 50% of that of the low-risk group. We observed that the high-risk group were enriched in Immune response and Immune process. Most importantly, in KEGG pathways, the high-risk groups were mainly enriched in p53 signaling pathway, JAK-STAT signaling pathway, pathways in cancer and cell cycle. By estimating the Immune cell contents, we also found that the Immune cell Plasma cells, T cells CD8, T cells CD4 naïve, T cells regulatory (Tregs), Macrophages M0 and Neutrophils were higher in high-risk groups, when compared to the low-risk group, with significant difference. Finally, the correlation analysis showed that the degree of Immune infiltration in high-risk groups was related to T cells regulatory (Tregs), Macrophages M0 and Neutrophils. Conclusion A COX risk prediction model of 6 genes was successfully constructed, which was enriched in Immune-related pathways. Meanwhile, survival analysis and TCGA data validation revealed significant differences in the model genes in the overall survival of the glioma patients, and the degree of Immune infiltration in the model was associated with T cells regulatory (Tregs), Macrophages M0 and Neutrophils.


2020 ◽  
Author(s):  
zhiyong zeng ◽  
Chaohui Wu ◽  
Zhenlv Lin ◽  
Yong Ye ◽  
Shaodan Feng ◽  
...  

Abstract Background No therapeutics have demonstrated specific efficacy for patients with COVID-19. Methods We retrospectively evaluated 351 patients with COVID-19 admitted to the Third People's Hospital of Yichang from 9 January to 25 March, 2020.Univariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were employed to identify risk factors associated with progression, which were then incorporated into the nomogram. Survival of patients between high-risk and low-risk groups was compared by kaplan-Meier analysis. Moreover, we assessed the effects of existing common drugs on survival of patients with high-risk. Results Based on the LASSO, four variables (white blood cell, C-reactive protein, whether lymphocyte ≥ 0.8 × 109/L, and whether lactate dehydrogenase ≥ 400 U/L) were selected for construction of the nomogram. Patients in the total cohort were stratified into low-risk group (total point < 160) and high-risk group (total point ≥ 160). Kaplan-Meier analysis demonstrated that there was significant difference in survival of patients between high-risk and low-risk groups (8-week survival rate: 71.41% vs 100%, P < 0.0001). Among the common drugs, we found that patients with high-risk received oseltamivir, lopinavir/ritonavir or Reduning injection exhibited better survival. The combination of these three drugs showed the effect of improving survival, although single drug may have no effect in different grouping analysis. Conclusions The combination of oseltamivir, lopinavir/ritonavir and Reduning injection may improve survival of COVID-19 patients with high-risk identified by our simple-to-use nomogram.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhicheng Zhuang ◽  
Huajun Cai ◽  
Hexin Lin ◽  
Bingjie Guan ◽  
Yong Wu ◽  
...  

Background. Pyroptosis has been confirmed as a type of inflammatory programmed cell death in recent years. However, the prognostic role of pyroptosis in colon cancer (CC) remains unclear. Methods. Dataset TCGA-COAD which came from the TCGA portal was taken as the training cohort. GSE17538 from the GEO database was treated as validation cohorts. Differential expression genes (DEGs) between normal and tumor tissues were confirmed. Patients were classified into two subgroups according to the expression characteristics of pyroptosis-related DEGs. The LASSO regression analysis was used to build the best prognostic signature, and its reliability was validated using Kaplan–Meier, ROC, PCA, and t-SNE analyses. And a nomogram based on the multivariate Cox analysis was developed. The enrichment analysis was performed in the GO and KEGG to investigate the potential mechanism. In addition, we explored the difference in the abundance of infiltrating immune cells and immune microenvironment between high- and low-risk groups. And we also predicted the association of common immune checkpoints with risk scores. Finally, we verified the expression of the pyroptosis-related hub gene at the protein level by immunohistochemistry. Results. A total of 23 pyroptosis-related DEGs were identified in the TCGA cohort. Patients were classified into two molecular clusters (MC) based on DEGs. Kaplan–Meier survival analysis indicated that patients with MC1 represented significantly poorer OS than patients with MC2. 13 overall survival- (OS-) related DEGs in MCs were used to construct the prognostic signature. Patients in the high-risk group exhibited poorer OS compared to those in the low-risk group. Combined with the clinical features, the risk score was found to be an independent prognostic factor of CC patients. The above results are verified in the external dataset GSE17538. A nomogram was established and showed excellent performance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the varied prognostic performance between high- and low-risk groups may be related to the immune response mediated by local inflammation. Further analysis showed that the high-risk group has stronger immune cell infiltration and lower tumor purity than the low-risk group. Through the correlation between risk score and immune checkpoint expression, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) was predicted as a potential therapeutic target for the high-risk group. Conclusion. The 13-gene signature was associated with OS, immune cells, tumor purity, and immune checkpoints in CC patients, and it could provide the basis for immunotherapy and predicting prognosis and help clinicians make decisions for individualized treatment.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Morten Lindhardt ◽  
Nete Tofte ◽  
Gemma Currie ◽  
Marie Frimodt-Moeller ◽  
Heiko Von der Leyen ◽  
...  

Abstract Background and Aims In the PRIORITY study, it was recently demonstrated that the urinary peptidome-based classifier CKD273 was associated with increased risk for progression to microalbuminuria. As a prespecified secondary outcome, we aim to evaluate the classifier CKD273 as a determinant of relative reductions in eGFR (CKD-EPI) of 30% and 40% from baseline, at one timepoint without requirements of confirmation. Method The ‘Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria trial’ (PRIORITY) is the first prospective observational study to evaluate the early detection of diabetic kidney disease in subjects with type 2 diabetes (T2D) and normoalbuminuria using the CKD273 classifier. Setting 1775 subjects from 15 European sites with a mean follow-up time of 2.6 years (minimum of 7 days and a maximum of 4.3 years). Patients Subjects with T2D, normoalbuminuria and estimated glomerular filtration rate (eGFR) ≥ 45 ml/min/1.73m2. Participants were stratified into high- or low-risk groups based on their CKD273 score in a urine sample at screening (high-risk defined as score &gt; 0.154). Results In total, 12 % (n = 216) of the subjects had a high-risk proteomic pattern. Mean (SD) baseline eGFR was 88 (15) ml/min/1.73m2 in the low-risk group and 81 (17) ml/min/1.73m2 in the high-risk group (p &lt; 0.01). Baseline median (interquartile range) urinary albumin to creatinine ratio (UACR) was 5 (3-8) mg/g and 7 (4-12) mg/g in the low-risk and high-risk groups, respectively (p &lt; 0.01). A 30 % reduction in eGFR from baseline was seen in 42 (19.4 %) subjects in the high-risk group as compared to 62 (3.9 %) in the low-risk group (p &lt; 0.0001). In an unadjusted Cox-model the hazard ratio (HR) for the high-risk group was 5.7, 95 % confidence interval (CI) (3.9 to 8.5; p&lt;0.0001). After adjustment for baseline eGFR and UACR, the HR was 5.2, 95 % CI (3.4 to 7.8; p&lt;0.0001). A 40 % reduction in eGFR was seen in 15 (6.9 %) subjects in the high-risk group whereas 22 (1.4 %) in the low-risk group developed this endpoint (p&lt;0.0001). In an unadjusted Cox-model the HR for the high-risk group was 5.0, 95 % CI (2.6 to 9.6; p&lt;0.0001). After adjustment for baseline eGFR and UACR, the HR was 4.8, 95 % CI (2.4 to 9.7; p&lt;0.0001). Conclusion In normoalbuminuric subjects with T2D, the urinary proteomic classifier CKD273 predicts renal function decline of 30 % and 40 %, independent of baseline eGFR and albuminuria.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jianfeng Zheng ◽  
Benben Cao ◽  
Xia Zhang ◽  
Zheng Niu ◽  
Jinyi Tong

Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune-related lncRNAs (IRLs) of CC has never been reported. This study is aimed at establishing an IRL signature for patients with CC. A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson correlation analysis between the immune score and lncRNA expression ( p < 0.01 ). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values ( p < 0.05 ) were identified which demonstrated an ability to stratify patients into the low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low-risk group showed longer overall survival (OS) than those in the high-risk group in the training set, valid set, and total set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four-IRL signature in predicting the one-, two-, and three-year survival rates was larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four IRLs in the development of CC were ascertained preliminarily.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 394-394
Author(s):  
Lavanniya Kumar Palani Velu ◽  
Vishnuvardhan Chandrabalan ◽  
Ross Carter ◽  
Colin McKay ◽  
Donald McMillan ◽  
...  

394 Background: Pancreas-specific complications (PSC), comprising postoperative pancreatic fistula, post-pancreatectomy haemorrhage, and intra-abdominal collections, are drivers of morbidity following pancreaticoduodenectomy (PD). Intra-operatively derived pancreatic gland texture is a major determinant of postoperative PSC. We have previously demonstrated that a postoperative day 0 (PoD0) serum amylase ≥ 130 IU/L is an objective surrogate of pancreatic texture, and is associated with PSC. We sought to refine the PSC risk prediction model by including serial measurements of serum C-reactive protein (CRP). Methods: 230 consecutive patients undergoing PD between 2008 and 2014 were included in the study. Routine serum investigations, including amylase and CRP were performed from the pre-operative day. Receiver operating characteristic (ROC) curve analysis was used to identify a threshold value of serum CRP associated with clinically significant PSC. Results: 95 (41.3%) patients experienced a clinically significant PSC. ROC analysis identified post-operative day 2 (PoD2) serum CRP of 180 mg/L as the optimal threshold (P=0.005) associated with clinically significant PSC, a prolonged stay in critical care (P =0.032), and a relaparotomy (P = 0.045). Patients with a PoD0 serum amylase ≥ 130 IU/L who then developed a PoD2 serum CRP ≥ 180 mg/L had a higher incidence of postoperative complications. Patients were categorised into high, intermediate and low risk groups based on PoD0 serum amylase and PoD2 serum CRP. Patients in the high risk group (PoD0 serum amylase ≥ 130 IU/L and PoD2 serum CRP ≥ 180 mg/l) had significantly higher incidence of PSC, a return to theatre, prolonged lengths stay (all P≤ 0.05) and a four-fold increase in perioperative mortality compared patients in the intermediate and low risk groups (7 deaths in the high risk group versus 2 and nil in the intermediate and low risk groups respectively). Conclusions: A high risk profile, defined as PoD0 serum amylase ≥ 130 IU/L and PoD2 serum CRP ≥ 180 mg/l, should raise the clinician’s awareness of the increased risk of clinically significant PSC and a complicated postoperative course following pancreaticoduodenectomy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 186-186 ◽  
Author(s):  
Inhye E. Ahn ◽  
Xin Tian ◽  
Maher Albitar ◽  
Sarah E. M. Herman ◽  
Erika M. Cook ◽  
...  

Abstract Introduction: We previously reported a prognostic scoring system in CLL using pre-treatment factors in patients treated with ibrutinib [Ahn et al, 2016 ASH Annual Meeting]. Here we present long-term follow-up results and validation of the prognostic models in a large independent cohort of patients. We also determine the incidence of resistance-conferring mutations in BTK and PLCG2 genes in different clinical risk groups. Methods and Patients: The discovery cohort comprised 84 CLL patients on a phase II study with either TP53 aberration (deletion 17p or TP53 mutation) or age ≥65 years (NCT01500733). The validation cohort comprised 607 patients pooled from four phase II and III studies for ibrutinib in treatment-naïve or relapsed/refractory CLL (NCT01105247; NCT01578707; NCT01722487; NCT01744691). All patients received single-agent ibrutinib 420mg once daily. We used Cox regression models to identify independent predictors of PFS, Kaplan-Meier method to estimate probabilities of PFS, log-rank test to compare PFS, and Cochran-Armitage trend test to compare the incidence of mutation among subgroups. We used R version 3.5.0 or SAS® version 9.3 for statistical analyses. For biomarker correlation, we tested cellular DNA or cell-free DNA collected from patients in the discovery cohort with the targeted sequencing of BTK and PLCG2 genes. Result: At a median follow-up of 5.2 years, 28 (33.3%) of 84 patients in the discovery cohort progressed or died. 52 (61.9%) patients had treatment-naïve CLL. Independent factors of PFS on univariate analysis were; TP53 aberration, prior treatment, and β-2 microglobulin (B2M) >4mg/L (P<0.05 for all tests). Unmutated IGHV and advanced Rai stage (III/IV) showed a trend toward inferior outcome without reaching statistical significance. Because higher levels of B2M were associated with relapsed/refractory CLL, we performed two multivariate Cox regression models to assess B2M and prior treatment status separately. Risk groups were determined by the presence of TP53 aberration, advanced Rai stage, and B2M >4mg/L for Model 1, and TP53 aberration, advanced Rai stage, and relapsed/refractory CLL for Model 2 (Table 1). The high-risk group had all three adverse risk factors; the intermediate-risk group had two risk factors; and the low-risk group, none or one. The median PFS of the high-risk group was 38.9 months for Model 1 and 38.4 months for Model 2, and was significantly shorter than those of intermediate and low-risk groups. In the validation cohort, 254 (41.8%) of 607 patients progressed or died at a median follow-up of 4.2 years. 167 (27.5%) patients had treatment-naïve CLL. Both models showed statistically significant differences in PFS by risk groups (Table 1). For the high-risk group, 4-year PFS was 30.2% in Model 1 and 30.5% in Model 2, which were inferior to those of intermediate (53.4 and 52.4%) and low-risk groups (68.7 and 73.7%). Model 1 classified 20% of patients and Model 2 classified 28% of patients to the high-risk group. BTK and PLCG2 mutations are common genetic drivers of ibrutinib resistance in CLL. To determine whether the incidence of these mutations correlates with prognostic risk groups, we performed targeted sequencing of BTK and PLCG2 of samples collected from patients in the discovery cohort. We used cell-free DNA for patients who received long-term ibrutinib (≥3 years) and had low circulating tumor burden, and cellular DNA, for samples collected within 3 years on ibrutinib or at progression. Of 84 patients, 69 (82.1%) were tested at least once, and 37 (44.0%) were tested at least twice. The frequency of testing was similar across the risk groups by two models (P>0.05). The cumulative incidences of mutations at 5 years in the low-, intermediate-, and high-risk groups were: 21.4%, 44.8% and 50%, respectively, by Model 1 (P=0.02); and 22.6%, 41.4% and 66.7%, respectively, by Model 2 (P=0.01). Conclusion: We developed and validated prognostic models to predict the risk of disease progression or death in CLL patients treated with ibrutinib. Risk groups classified by three commonly available pre-treatment factors showed statistically significant differences in PFS. The clinically-defined high-risk disease was linked to higher propensity to develop clonal evolution with BTK and/or PLCG2 mutations, which heralded ibrutinib resistance. Disclosures Albitar: Neogenomics Laboratories: Employment. Ma:Neogenomics Laboratories: Employment. Ipe:Pharmacyclics, an AbbVie Company: Employment, Other: Travel; AbbVie: Equity Ownership. Tsao:Pharmacyclics LLC, an AbbVie Company: Employment. Cheng:Pharmacyclics LLC, an AbbVie Company: Employment. Dean:CTI BioPharma Corp.: Employment, Equity Ownership; Pharmacyclics LLC, an AbbVie Company: Employment, Equity Ownership. Wiestner:Pharmacyclics LLC, an AbbVie Company: Research Funding.


2021 ◽  
Author(s):  
Peng-wei Cao ◽  
Lei Liu ◽  
Zi-Han Li ◽  
Feng Cao ◽  
Fu-Bao Liu

Abstract Background: The role of N6-methyladenosine (m6A)-associated long-stranded non-coding RNA (lncRNA) in pancreatic cancer is unclear. Therefore, we analysed the characteristics and tumour microenvironment in pancreatic cancer and determined the value of m6A-related lncRNAs for prognosis and drug target prediction.Methods: An m6A-lncRNA co-expression network was constructed using The Cancer Genome Atlas database to screen m6A-related lncRNAs. Prognosis-related lncRNAs were screened using univariate Cox regression; patients were divided into high- and low-risk groups and randomised into training and test groups. In the training group, least absolute shrinkage and selection operator (LASSO) was used for regression analysis and to construct a prognostic model, which was validated in the test group. Tumour mutational burden (TMB), immune evasion, and immune function of risk genes were analysed using R; drug sensitivity and potential drugs were examined using the Genomics of Drug Sensitivity in Cancer database.Results: We screened 129 m6A-related lncRNAs; 17 prognosis-related m6A-related lncRNAs were obtained using multivariate analysis and three m6A-related lncRNAs (AC092171.5, MEG9, AC002091.1) were screened using LASSO regression. Survival rates were significantly higher (P < 0.05) in the low-risk than in the high-risk group. Risk score was an independent predictor affecting survival (P < 0.001), with the highest risk score being obtained by calculating the c-index. The TMB significantly differed between the high- and low-risk groups (P < 0.05). In the high- and low-risk groups, mutations were detected in 61 of 70 samples and 49 of 71 samples, respectively, with KRAS, TP53, and SMAD4 showing the highest mutation frequencies in both groups. A lower survival rate was observed in patients with a high versus low TMB. Immune function HLA, Cytolytic activity, and Inflammation-promoting, T cell co-inhibition, Check-point, and T cell co-stimulation significantly differed in different subgroups (P < 0.05). Immune evasion scores were significantly higher in the high-risk group than in the low-risk group. Eight sensitive drugs were screened: ABT.888, ATRA, AP.24534, AG.014699, ABT.263, axitinib, A.443654, and A.770041.Conclusions: We screened m6A-related lncRNAs using bioinformatics, constructed a prognosis-related model, explored TMB and immune function differences in pancreatic cancer, and identified potential therapeutic agents, providing a foundation for further studies of pancreatic cancer diagnosis and treatment.


2021 ◽  
Vol 18 (6) ◽  
pp. 7743-7758
Author(s):  
Linlin Tan ◽  
◽  
Dingzhuo Cheng ◽  
Jianbo Wen ◽  
Kefeng Huang ◽  
...  

<abstract> <sec><title>Background</title><p>Hypoxia is a crucial factor in the development of esophageal cancer. The relationship between hypoxia and immune status in the esophageal cancer microenvironment is becoming increasingly important in clinical practice. This study aims to clarify and investigate the possible connection between immunotherapy and hypoxia in esophageal cancer.</p> </sec> <sec><title>Methods</title><p>The Cancer Genome Atlas databases are used to find two types of esophageal cancer cases. Cox regressions analyses are used to screen genes for hypoxia-related traits. After that, the genetic signature is validated by survival analysis and the construction of ROC curves. GSEA is used to compare differences in enrichment in the two groups and is followed by the CIBERSORT tool to investigate a potentially relevant correlation between immune cells and gene signatures.</p> </sec> <sec><title>Results</title><p>We found that the esophageal adenocarcinoma hypoxia model contains 3 genes (PGK1, PGM1, SLC2A3), and the esophageal squamous cell carcinoma hypoxia model contains 2 genes (EGFR, ATF3). The findings demonstrated that the survival rate of patients in the high-risk group is lower than in the lower-risk group. Furthermore, we find that three kinds of immune cells (memory activated CD4+ T cells, activated mast cells, and M2 macrophages) have a marked infiltration in the tissues of patients in the high-risk group. Moreover, we find that PD-L1 and CD244 are highly expressed in high-risk groups.</p> </sec> <sec><title>Conclusions</title><p>Our data demonstrate that oxygen deprivation is correlated with prognosis and the incidence of immune cell infiltration in patients with both types of esophageal cancer, which provides an immunological perspective for the development of personalized therapy.</p> </sec> </abstract>


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinyuan Shi ◽  
Pu Wu ◽  
Lei Sheng ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC), accounting for more than 80% of all cases. Ferroptosis is a novel iron-dependent and Reactive oxygen species (ROS) reliant type of cell death which is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in PTC remains unclear. This study aims at exploring the expression of ferroptosis-related genes (FRG) and their prognostic values in PTC. Methods A ferroptosis-related gene signature was constructed using lasso regression analysis through the PTC datasets of the Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT database. Finally, SDG were test in clinical PTC specimens and normal thyroid tissues. Results LASSO regression model was utilized to establish a novel FRG signature with 10 genes (ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF, TFRC, TXNRD1) to predicts the prognosis of PTC, and the patients were separated into high-risk and low-risk groups by the risk score. The high-risk group had poorer survival than the low-risk group (p < 0.001). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Multivariate regression analysis identified the prognostic signature-based risk score was an independent prognostic indicator for PTC. The functional roles of the DEGs in the TGCA PTC cohort were explored using GO enrichment and KEGG pathway analyses. Immune related analysis demonstrated that the most types of immune cells and immunological function in the high-risk group were significant different with those in the low-risk group. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) verified the SDG have differences in expression between tumor tissue and normal thyroid tissue. In addition, cell experiments were conducted to observe the changes in cell morphology and expression of signature’s genes with the influence of ferroptosis induced by sorafenib. Conclusions We identified differently expressed FRG that may involve in PTC. A ferroptosis-related gene signature has significant values in predicting the patients’ prognoses and targeting ferroptosis may be an alternative for PTC’s therapy.


Sign in / Sign up

Export Citation Format

Share Document