scholarly journals Autophagy-Related Genes and Long Noncoding RNAs Signatures as Predictive Biomarkers for Osteosarcoma Survival

Author(s):  
Jian Zhang ◽  
Rui Ding ◽  
Tianlong Wu ◽  
Jingyu Jia ◽  
Xigao Cheng

Osteosarcoma is a common malignant tumor that seriously threatens the lives of teenagers and children. Autophagy is an intracellular metabolic process mediated by autophagy-related genes (ARGs), which is known to be associated with the progression and drug resistance of osteosarcoma. In this study, RNA sequence data from TARGET and genotype-tissue expression (GTEx) databases were analyzed. A six autophagy-related long noncoding RNAs (ARLs) signature that accurately predicted the clinical outcomes of osteosarcoma patients was identified, and the relations between immune response and the ARLs prognostic signature were examined. In addition, we obtained 30 ARGs differentially expressed among osteosarcoma tissue and healthy tissue, and performed functional enrichment analysis on them. To screen for prognostic-related ARGs, univariate and LASSO Cox regression analyses were successively applied. Then, multivariate regression analysis was used to complete construction of the prognostic signature of ARGs. Based on the risk coefficient, we calculated the risk score and grouped the patients. Survival analysis showed that high-risk patients evolve with poor prognosis. And we verified the prognosis model in the GSE21257 cohort. Finally, verification was conducted by qRT-PCR and western blot to measure the expression of genes. The results show that autophagy-related marker models may provide a new therapeutic and diagnostic target for osteosarcoma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
XinJie Yang ◽  
Sha Niu ◽  
JiaQiang Liu ◽  
Jincheng Fang ◽  
ZeYu Wu ◽  
...  

AbstractGlioblastoma (GBM) is a strikingly heterogeneous and lethal brain tumor with very poor prognosis. LncRNAs play critical roles in the tumorigenesis of GBM through regulation of various cancer-related genes and signaling pathways. Here, we focused on the essential role of EMT and identified 78 upregulated EMT-related genes in GBM through differential expression analysis and Gene set enrichment analysis (GSEA). A total of 301 EMT-related lncRNAs were confirmed in GBM through Spearman correlation analysis and a prognostic signature consisting of seven EMT-related lncRNAs (AC012615.1, H19, LINC00609, LINC00634, POM121L9P, SNHG11, and USP32P3) was established by univariate and multivariate Cox regression analyses. Significantly, Kaplan–Meier analysis and receiver-operating-characteristic (ROC) curve validated the accuracy and efficiency of the signature to be satisfactory. Quantitative real-time (qRT)-PCR assay demonstrated the expression alterations of the seven lncRNAs between normal glial and glioma cell lines. Functional enrichment analysis revealed multiple EMT and metastasis-related pathways were associated with the EMT-related lncRNA prognostic signature. In addition, we observed the degree of immune cell infiltration and immune responses were significantly increased in high-risk subgroup compared with low-risk subgroup. In conclusion, we established an effective and robust EMT-related lncRNA signature which was expected to predict the prognosis and immunotherapy response for GBM patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuntao Shi ◽  
Yingying Zhuang ◽  
Jialing Zhang ◽  
Mengxue Chen ◽  
Shangnong Wu

Objective. Although noncoding RNAs, especially the microRNAs, have been found to play key roles in CRC development in intestinal tissue, the specific mechanism of these microRNAs has not been fully understood. Methods. GEO and TCGA database were used to explore the microRNA expression profiles of normal mucosa, adenoma, and carcinoma. And the differential expression genes were selected. Computationally, we built the SVM model and multivariable Cox regression model to evaluate the performance of tumorigenic microRNAs in discriminating the adenomas from normal tissues and risk prediction. Results. In this study, we identified 20 miRNA biomarkers dysregulated in the colon adenomas. The functional enrichment analysis showed that MAPK activity and MAPK cascade were highly enriched by these tumorigenic microRNAs. We also investigated the target genes of the tumorigenic microRNAs. Eleven genes, including PIGF, TPI1, KLF4, RARS, PCBP2, EIF5A, HK2, RAVER2, HMGN1, MAPK6, and NDUFA2, were identified to be frequently targeted by the tumorigenic microRNAs. The high AUC value and distinct overall survival rates between the two risk groups suggested that these tumorigenic microRNAs had the potential of diagnostic and prognostic value in CRC. Conclusions. The present study revealed possible mechanisms and pathways that may contribute to tumorigenesis of CRC, which could not only be used as CRC early detection biomarkers, but also be useful for tumorigenesis mechanism studies.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12600-e12600
Author(s):  
Anna Adam-Artigues ◽  
Miguel Angel Beltran ◽  
Juan Antonio Carbonell-Asins ◽  
Sheila Zuñiga ◽  
Santiago Moragon ◽  
...  

e12600 Background: In early-stage HER2+ breast cancer (BC), escalation or de-escalation of systemic treatment is an unmet need. Integration of promising biomarkers into risk scoring will further help progressing in the field. We aim to develop a prognostic signature that integrates two miRNAs (A and B) and quantitative and qualitative clinical variables in patients diagnosed with HER2+ BC. Methods: This study was conducted in a retrospective cohort of 45 HER2+ BC patients. Patients received standard treatment for localized disease. We calculated a prognostic signature for disease-free survival (DFS) using principal components analysis for mixed data combining clinicopathological data (Ki67 and axillary lymph node [pN0, pN1, pN2, pN3]) and expression of two microRNAs (we used mir-16 as housekeeping). Multiple DFS prognostic signatures were calculated and goodness of fit was evaluated by means of Akaike’s Information Criterion (AIC) to perform Cox model selection. Signature was then dichotomized into “high risk” and “low risk” using maximally selected Log-Rank statistics by Hothorn and Lausen, as method for optimal cut-off. Kaplan-Meier curves, Log-Rank test and Breslow test were used to ascertain statistical differences in the probability of DFS between high and low risk groups. MiRNA targeted genes were selected and used to perform functional enrichment analysis with the KEGG pathway database. To select significant terms/pathways, p-values were adjusted by the Benjamini-Hochberg method (p < 0.05). Results: MiR-A and miR-B expression was higher in primary tumor of patients who relapse compared to those free of disease after treatment (p = 0.018 and 0.004, respectively). Both miRNAs were strongly correlated (r = 0.84). This signature was significantly associated with relapse of the disease (HR 1.72; CI 95%: 1.243–2.382; p < 0.01, AIC = 114.02). The optimal cut-off of this score was obtained and patients were classified into high and low risk groups. Median DFS of the high-risk was 44 months while it has been not reached yet across the low risk after a median follow-up of 67 months (HR 8.39; p = 0.005, AIC = 111.784). Significant differences in survival between both groups were found (log rank test p < 0.001; Breslow test p = 0.002). miR-A and miR-B functional enrichment analysis returned 55 significant pathways. Interestingly, P53 pathway, apoptosis and cell cycle which are closely related to tumorigenesis and treatment response, were in the top 5 enriched pathways. Conclusions: Both miRNAs included in this signature are related to important biological pathways associated to BC progression. Our new prognostic signature identifies patients with early-stage, HER2+ BC who might be candidates for escalated or de-escalated systemic treatment. This signature was able to classify patients for DFS in high or low risk groups at the moment of BC diagnosis. Further investigations to validate the value of this new signature are on-going.


Author(s):  
Peng Wang ◽  
Xin Li ◽  
Yue Gao ◽  
Qiuyan Guo ◽  
Shangwei Ning ◽  
...  

Abstract LnCeVar (http://www.bio-bigdata.net/LnCeVar/) is a comprehensive database that aims to provide genomic variations that disturb lncRNA-associated competing endogenous RNA (ceRNA) network regulation curated from the published literature and high-throughput data sets. LnCeVar curated 119 501 variation–ceRNA events from thousands of samples and cell lines, including: (i) more than 2000 experimentally supported circulating, drug-resistant and prognosis-related lncRNA biomarkers; (ii) 11 418 somatic mutation–ceRNA events from TCGA and COSMIC; (iii) 112 674 CNV–ceRNA events from TCGA; (iv) 67 066 SNP–ceRNA events from the 1000 Genomes Project. LnCeVar provides a user-friendly searching and browsing interface. In addition, as an important supplement of the database, several flexible tools have been developed to aid retrieval and analysis of the data. The LnCeVar–BLAST interface is a convenient way for users to search ceRNAs by interesting sequences. LnCeVar–Function is a tool for performing functional enrichment analysis. LnCeVar–Hallmark identifies dysregulated cancer hallmarks of variation–ceRNA events. LnCeVar–Survival performs COX regression analyses and produces survival curves for variation–ceRNA events. LnCeVar–Network identifies and creates a visualization of dysregulated variation–ceRNA networks. Collectively, LnCeVar will serve as an important resource for investigating the functions and mechanisms of personalized genomic variations that disturb ceRNA network regulation in human diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Yun Zhong ◽  
Zhe Liu ◽  
Dangchi Li ◽  
Qinyuan Liao ◽  
Jingao Li

Background. An increasing number of studies have indicated that the abnormal expression of certain long noncoding RNAs (lncRNAs) is linked to the overall survival (OS) of patients with myeloma. Methods. Gene expression data of myeloma patients were downloaded from the Gene Expression Omnibus (GEO) database (GSE4581 and GSE57317). Cox regression analysis, Kaplan-Meier, and receiver operating characteristic (ROC) analysis were performed to construct and validate the prediction model. Single sample gene set enrichment (ssGSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to predict the function of a specified lncRNA. Results. In this study, a seven-lncRNA signature was identified and used to construct a risk score system for myeloma prognosis. This system was used to stratify patients with different survival rates in the training set into high-risk and low-risk groups. Test set, the entire test set, the external validation set, and the myeloma subtype achieved the authentication of the results. In addition, functional enrichment analysis indicated that 7 prognostic lncRNAs may be involved in the tumorigenesis of myeloma through cancer-related pathways and biological processes. The results of the immune score showed that IF_I was negatively correlated with the risk score. Compared with the published gene signature, the 7-lncRNA model has a higher C-index (above 0.8). Conclusion. In summary, our data provide evidence that seven lncRNAs could be used as independent biomarkers to predict the prognosis of myeloma, which also indicated that these 7 lncRNAs may be involved in the progression of myeloma.


2021 ◽  
Vol 11 ◽  
Author(s):  
JunJie Yu ◽  
WeiPu Mao ◽  
Si Sun ◽  
Qiang Hu ◽  
Can Wang ◽  
...  

PurposeThis study aimed to construct an m6A-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using data obtained from The Cancer Genome Atlas (TCGA) database.MethodsThe KIRC patient data were downloaded from TCGA database and m6A-related genes were obtained from published articles. Pearson correlation analysis was implemented to identify m6A-related lncRNAs. Univariate, Lasso, and multivariate Cox regression analyses were used to identifying prognostic risk-associated lncRNAs. Five lncRNAs were identified and used to construct a prognostic signature in training set. Kaplan–Meier curves and receiver operating characteristic (ROC) curves were applied to evaluate reliability and sensitivity of the signature in testing set and overall set, respectively. A prognostic nomogram was established to predict the probable 1-, 3-, and 5-year overall survival of KIRC patients quantitatively. GSEA was performed to explore the potential biological processes and cellular pathways. Besides, the lncRNA/miRNA/mRNA ceRNA network and PPI network were constructed based on weighted gene co-expression network analysis (WGCNA). Functional Enrichment Analysis was used to identify the biological functions of m6A-related lncRNAs.ResultsWe constructed and verified an m6A-related lncRNAs prognostic signature of KIRC patients in TCGA database. We confirmed that the survival rates of KIRC patients with high-risk subgroup were significantly poorer than those with low-risk subgroup in the training set and testing set. ROC curves indicated that the prognostic signature had a reliable predictive capability in the training set (AUC = 0.802) and testing set (AUC = 0.725), respectively. Also, we established a prognostic nomogram with a high C-index and accomplished good prediction accuracy. The lncRNA/miRNA/mRNA ceRNA network and PPI network, as well as functional enrichment analysis provided us with new ways to search for potential biological functions.ConclusionsWe constructed an m6A-related lncRNAs prognostic signature which could accurately predict the prognosis of KIRC patients.


2021 ◽  
Author(s):  
Mohib kakar ◽  
Muhammad Mehboob ◽  
Muhammad Akram ◽  
Imran Iqbal ◽  
Hafza Ijaz ◽  
...  

Abstract Objective The goal of this study was to understand possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods GEO contains datasets of gene expression, miRNA and methylation patterns of diseased and healthy/control patients. GSE62232 Dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC samples and 10 healthy samples as control. GSE62232 was analyzed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting genes interacting. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analyzed using GEPIA to estimate the effect of their differential expression on cancer progression. Results We identified the top 10 hub genes through Cytohubba plugin. These genes include Cell Cycle Regulatory Cyclins and Cyclin-dependent proteins CCNA2, CCNB1 and CDK1. The pathogenesis and prognosis of HCC may be directly linked with the aforementioned genes. Conclusion In this analysis, we found critical genes for HCC that showed recommendations for more diagnostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lixian Chen ◽  
Zhonglu Ren ◽  
Yongming Cai

Increasing evidence has shown that noncoding RNAs play significant roles in the initiation, progression, and metastasis of tumours via participating in competing endogenous RNA (ceRNA) networks. However, the survival-associated ceRNA in lung adenocarcinoma (LUAD) remains poorly understood. In this study, we aimed to investigate the regulatory mechanisms underlying ceRNA in LUAD to identify novel prognostic factors. mRNA, lncRNA, and miRNA sequencing data obtained from the GDC data portal were utilized to identify differentially expressed (DE) RNAs. Survival-related RNAs were recognized using univariate Kaplan-Meier survival analysis. We performed functional enrichment analysis of survival-related mRNAs using the clusterProfiler package of R and STRING. lncRNA-miRNA and miRNA-mRNA interactions were predicted based on miRcode, Starbase, and miRanda. Subsequently, the survival-associated ceRNA network was constructed for LUAD. Multivariate Cox regression analysis was used to identify prognostic factors. Finally, we acquired 15 DE miRNAs, 49 DE lncRNAs, and 843 DE mRNAs associated with significant overall survival. Functional enrichment analysis indicated that survival-related DE mRNAs were enriched in cell cycle. The survival-associated lncRNA-miRNA-mRNA ceRNA network was constructed using five miRNAs, 49 mRNAs, and 21 lncRNAs. Furthermore, seven hub RNAs (LINC01936, miR-20a-5p, miR-31-5p, TNS1, TGFBR2, SMAD7, and NEDD4L) were identified based on the ceRNA network. LINC01936 and miR-31-5p were found to be significant using the multifactorial Cox regression model. In conclusion, we successfully constructed a survival-related lncRNA-miRNA-mRNA ceRNA regulatory network in LUAD and identified seven hub RNAs, which provide novel insights into the regulatory molecular mechanisms associated with survival of LUAD, and identified two independent prognostic predictors for LUAD.


2020 ◽  
Author(s):  
Yang Wang ◽  
Chengping Hu

Abstract Background: Long non-coding RNAs (lncRNAs) have been reported to play essential roles in tumorigenesis and cancers prognosis, and they can be a potential cancer prognostic markers. However, in lung adenocarcinoma(LUAD), how lncRNA signatures predict the survival of patients is poorly understood. Our study aims to explore lncRNA signatures and prognostic function in LUAD.Methods: The expression and prognosis data of lncRNAs in LUAD patients was collected from the Cancer Genome Atlas (TCGA) data. All analyses were performed using the R package (version 3.6.2). Metascape, STRING and Cytoscape were used for enrichment analysis and function prediction of the lncRNA co-expressed protein-coding genes.Results: We have collected lncRNA expression data in 466 LUAD tumors, and a six-lncRNA signature(RP11-79H23.3, RP11-309M7.1, CTD-2357A8.3, RP11-108P20.4, U47924.29, LHFPL3-AS2) has been shown to be significantly related to LUAD patients’ overall survival. According to the lncRNA signatures, the high-risk and low-risk groups were divided in LUAD patients with different survival rates. Further multivariable cox regression analysis showed that the prognostic value of this signature was independent of clinical factors. The potential functional roles and hub co-expressed protein-coding genes in the six prognostic lncRNAs are shown in the functional enrichment analysis.Conclusions: These results showed that these six lncRNAs could be independent predicted prognostic biomarkers in LUAD patients.


Sign in / Sign up

Export Citation Format

Share Document