scholarly journals The Multifaceted Roles of Proline in Cell Behavior

Author(s):  
Eduardo J. Patriarca ◽  
Federica Cermola ◽  
Cristina D’Aniello ◽  
Annalisa Fico ◽  
Ombretta Guardiola ◽  
...  

Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.

2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


2021 ◽  
Vol 22 (9) ◽  
pp. 4297
Author(s):  
Matthew Thomas Ferreira ◽  
Juliano Andreoli Miyake ◽  
Renata Nascimento Gomes ◽  
Fábio Feitoza ◽  
Pollyana Bulgarelli Stevannato ◽  
...  

Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2383
Author(s):  
Francesco Roncato ◽  
Ofer Regev ◽  
Sara W. Feigelson ◽  
Sandeep Kumar Yadav ◽  
Lukasz Kaczmarczyk ◽  
...  

The mechanisms by which the nuclear lamina of tumor cells influences tumor growth and migration are highly disputed. Lamin A and its variant lamin C are key lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C in two prototypic metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, and reduced heterochromatin content. Surprisingly, both lamin A/C knockdown cells grew poorly in 3D spheroids within soft agar, and lamin A/C deficient cells derived from spheroids transcribed lower levels of the growth regulator Yap1. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown and their metastasis in lungs was even dramatically reduced. Our results are the first indication that reduced lamin A/C content in distinct types of highly metastatic cancer cells does not elevate their transendothelial migration (TEM) capacity and diapedesis through lung vessels but can compromise lung metastasis at a post extravasation level.


2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


2021 ◽  
Vol 22 (21) ◽  
pp. 11944
Author(s):  
Anna Zita Mehira Kamptner ◽  
Christoph-Erik Mayer ◽  
Hedwig Sutterlüty

Sprouty proteins are widely accepted modulators of receptor tyrosine kinase-associated pathways and fulfill diversified roles in cancerogenesis dependent on the originating cells. In this study we detected a high expression of Sprouty3 in osteosarcoma-derived cells and addressed the question of whether Sprouty3 and Sprouty1 influence the malignant phenotype of this bone tumor entity. By using adenoviruses, the Sprouty proteins were expressed in two different cell lines and their influence on cellular behavior was assessed. Growth curve analyses and Scratch assays revealed that Sprouty3 accelerates cell proliferation and migration. Additionally, more colonies were grown in Soft agar if the cells express Sprouty3. In parallel, Sprouty1 had no significant effect on the measured endpoints of the study in osteosarcoma-derived cells. The promotion of the tumorigenic capacities in the presence of Sprouty3 coincided with an increased activation of signaling as measured by evaluating the phosphorylation of extracellular signal-regulated kinases (ERKs). Ectopic expression of a mutated Sprouty3 protein, in which the tyrosine necessary for its activation was substituted, resulted in inhibited migration of the treated cells. Our findings identify Sprouty3 as a candidate for a tumor promoter in osteosarcoma.


Author(s):  
Wenwei Xu ◽  
Roman Mezencev ◽  
Byungkyu Kim ◽  
Lijuan Wang ◽  
John McDonald ◽  
...  

Cancer cells undergo a variety of biochemical and biophysical transformations when compared to identical cells displaying a healthy phenotypic state, cancer cells show a drastic reduction of stiffness upon malignancy[1, 2] and change of stiffness of single cells can indicate the presence of disease [3–6]. Besides, metastatic cancer has a higher deformability than their benign counterparts[7, 8]. Using atomic force microscopy, we demonstrated that cancerous ovarian cells (OVCAR3, OVCAR4, HEY and HEYA8) are substantially softer than the healthy immortalized ovarian surface epithelium (IOSE) cells. In addition, within the different types of cancerous ovarian cells, increased invasiveness and migration are directly correlated with increased cell deformability. These results indicate that stiffness of individual cells can distinguish not only ovarian cancer cells from healthy cells types, but also invasive cancer types from less invasive types. Stiffness may provide an alternative and convenient biomarker to grade the metastasis potential of cancer cells.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 326 ◽  
Author(s):  
Min-Hong Hsieh ◽  
Jia-Sin Yang ◽  
Renn-Chia Lin ◽  
Yi-Hsien Hsieh ◽  
Shun-Fa Yang ◽  
...  

Osteosarcoma, which is the most prevalent malignant bone tumor, is responsible for the great majority of bone cancer-associated deaths because of its highly metastatic potential. Although tomatidine is suggested to serve as a chemosensitizer in multidrug-resistant tumors, the anti-metastatic effect of tomatidine in osteosarcoma is still unknown. Here, we tested the hypothesis that tomatidine suppresses migration and invasion, features that are associated with metastatic process in human osteosarcoma cells and also investigate its underlying pathway. Tomatidine, up to 100 μM, without cytotoxicity, inhibited the invasion and migration capabilities of human osteosarcoma U2OS and HOS cells and repressed presenilin 1 (PS-1) expression of U2OS cells. After the knockdown of PS-1, U2OS and HOS cells’ biological behaviors of cellular invasion and migratory potential were significantly reduced. While tomatidine significantly decreased the phosphorylation of c-Raf, mitogen/extracellular signal-regulated kinase (MEK), and extracellular signal-regulated protein kinase (ERK)1/2 in U2OS cells, no obvious influences on p-Jun N-terminal kinase, p38, and Akt, including their phosphorylation, were observed. In ERK 1 silencing U2 OS cells, tomatidine further enhanced the decrease of their migratory potential and invasive activities. We conclude that both PS-1 derived from U2OS and HOS cells and the c-Raf–MEK–ERK pathway contribute to cellular invasion and migration and tomatidine could inhibit the phenomenons. These findings indicate that tomatidine might be a potential candidate for anti-metastasis treatment of human osteosarcoma.


2019 ◽  
Vol 14 (1) ◽  
pp. 133-140
Author(s):  
Rui-Xia Chang ◽  
Ai-Ling Cui ◽  
Lu Dong ◽  
Su-Ping Guan ◽  
Ling-Yan Jiang ◽  
...  

AbstractRAS protein activator like-1 (RASAL1) exists in numerous human tissues and has been commonly demonstrated to act as a tumor suppressor in several cancers. This study aimed to identify the functional characteristics of RASAL1 in ovarian adenocarcinoma and a potential mechanism of action. We analyzed RASAL1 gene expression in ovarian adenocarcinoma samples and normal samples gained from the GEO and Oncomine databases respectively. Then the relationship between RASAL1 expression and overall survival (OS) was assessed using the Kaplan-Meier method. Furthermore, the biological effect of RASAL1 in ovarian adenocarcinoma cell lines was assessed by Quantitative real time-PCR (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blot, wound healing and transwell assay. The statistical analysis showed patients with higher RASAL1 expression correlated with worse OS. The in vitro assays suggested knockdown of RASAL1 could inhibit cell proliferation, cell invasion and migration of ovarian adenocarcinoma. Moreover, the key proteins in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathway were also decreased in ovarian adenocarcinoma cells with RASAL1 silencing. These findings provide promising evidence that RASAL1 may be not only a powerful biomarker but also an effective therapeutic target of ovarian adenocarcinoma.


2000 ◽  
Vol 355 (1397) ◽  
pp. 633-642 ◽  
Author(s):  
Douglas M. Heithoff ◽  
Robert L. Sinsheimer ◽  
David A. Low ◽  
Michael J. Mahan

Microbial pathogens possess a repertoire of virulence determinants that each make unique contributions to fitness during infection. Analysis of these in vivo –expressed functions reveals the biology of the infection process, encompassing the bacterial infection strategies and the host ecological and environmental retaliatory strategies designed to combat them (e.g. thermal, osmotic, oxygen, nutrient and acid stress). Many of the bacterial virulence functions that contribute to a successful infection are normally only expressed during infection. A genetic approach was used to isolate mutants that ectopically expressed many of these functions in a laboratory setting. Lack of DNA adenine methylase (Dam) in Salmonella typhimurium abolishes the preferential expression of many bacterial virulence genes in host tissues. Dam − Salmonella were proficient in colonization of mucosal sites but were defective in colonization of deeper tissue sites. Additionally, Dam − mutants were totally avirulent and effective as live vaccines against murine typhoid fever. Since dam is highly conserved in many pathogenic bacteria that cause significant morbidity and mortality worldwide, Dams are potentially excellent targets for both vaccines and antimicrobials.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2328 ◽  
Author(s):  
Corinna Kosnopfel ◽  
Tobias Sinnberg ◽  
Birgit Sauer ◽  
Heike Niessner ◽  
Alina Muenchow ◽  
...  

Secreted factors play an important role in intercellular communication. Therefore, they are not only indispensable for the regulation of various physiological processes but can also decisively advance the development and progression of tumours. In the context of inflammatory disease, Y-box binding protein 1 (YB-1) is actively secreted and the extracellular protein promotes cell proliferation and migration. In malignant melanoma, intracellular YB-1 expression increases during melanoma progression and represents an unfavourable prognostic marker. Here, we show active secretion of YB-1 from melanoma cells as opposed to benign cells of the skin. Intriguingly, YB-1 secretion correlates with the stage of melanoma progression and depends on a calcium- and ATP-dependent non-classical secretory pathway leading to the occurrence of YB-1 in the extracellular space as a free protein. Along with an elevated YB-1 secretion of melanoma cells in the metastatic growth phase, extracellular YB-1 exerts a stimulating effect on melanoma cell migration, invasion, and tumourigenicity. Collectively, these data suggest that secreted YB-1 plays a functional role in melanoma cell biology, stimulating metastasis, and may serve as a novel biomarker in malignant melanoma that reflects tumour aggressiveness.


Sign in / Sign up

Export Citation Format

Share Document