scholarly journals Regulation of Nuclear Factor-kappaB Function by O-GlcNAcylation in Inflammation and Cancer

Author(s):  
Angela Rose Liu ◽  
Parameswaran Ramakrishnan

Nuclear factor-kappaB (NF-κB) is a pleiotropic, evolutionarily conserved transcription factor family that plays a central role in regulating immune responses, inflammation, cell survival, and apoptosis. Great strides have been made in the past three decades to understand the role of NF-κB in physiological and pathological conditions. Carcinogenesis is associated with constitutive activation of NF-κB that promotes tumor cell proliferation, angiogenesis, and apoptosis evasion. NF-κB is ubiquitously expressed, however, its activity is under tight regulation by inhibitors of the pathway and through multiple posttranslational modifications. O-GlcNAcylation is a dynamic posttranslational modification that controls NF-κB-dependent transactivation. O-GlcNAcylation acts as a nutrient-dependent rheostat of cellular signaling. Increased uptake of glucose and glutamine by cancer cells enhances NF-κB O-GlcNAcylation. Growing evidence indicates that O-GlcNAcylation of NF-κB is a key molecular mechanism that regulates cancer cell proliferation, survival and metastasis and acts as link between inflammation and cancer. In this review, we are attempting to summarize the current understanding of the cohesive role of NF-κB O-GlcNAcylation in inflammation and cancer.

2021 ◽  
pp. 088506662199232
Author(s):  
Xiaojuan Zhang ◽  
Xin Li

Septic shock with multiple organ failure is a devastating situation in clinical settings. Through the past decades, much progress has been made in the management of sepsis and its underlying pathogenesis, but a highly effective therapeutic has not been developed. Recently, macromolecules such as histones have been targeted in the treatment of sepsis. Histones primarily function as chromosomal organizers to pack DNA and regulate its transcription through epigenetic mechanisms. However, a growing body of research has shown that histone family members can also exert cellular toxicity once they relocate from the nucleus into the extracellular space. Heparin, a commonly used anti-coagulant, has been shown to possess life-saving capabilities for septic patients, but the potential interplay between heparin and extracellular histones has not been investigated. In this review, we summarize the pathogenic roles of extracellular histones and the therapeutic roles of heparin in the development and management of sepsis and septic shock.


2002 ◽  
Vol 15 (5) ◽  
pp. 321-329 ◽  
Author(s):  
Jing Shang ◽  
Jürgen Eberle ◽  
Christoph C. Geilen ◽  
Amir M. Hossini ◽  
Lothar F. Fecker ◽  
...  

1983 ◽  
Vol 61 (3) ◽  
pp. 909-916 ◽  
Author(s):  
Orson K. Miller Jr.

Over the past decade much progress has been made in an effort to determine which fungi are mycorrhizal symbionts. It is now apparent that one ectomycorrhizal or ectendomycorrhizal host is often able to form mycorrhizae with a wide variety of higher fungi. Evidence is presented which supports the hypothesis that fungal succession occurs as the host matures. In addition, fungi which are normally ectomycorrhizal may sometimes form endomycorrhizae on different hosts or under altered ecological conditions. There has also been much evolution in fruiting-body form and mode of spore discharge especially under severe montane or desert conditions. As a result patterns are emerging in the Homobasidiomycetes at the order, family, and generic level in the evolution of the mycorrhizal habit. Spore morphology, habitat, and distribution are listed and discussed in relation to the biological role of the fungi.


2021 ◽  
Vol 16 (1) ◽  
pp. 1045-1052
Author(s):  
Yufeng Wang ◽  
Zheng Cao ◽  
Fengjia Liu ◽  
Yuejian Ou

Abstract Wnt/β‐catenin signaling is an evolutionarily conserved pathway and plays a crucial role in regulating cancer cell proliferation and tumorigenesis. However, the molecular mechanism behind the Wnt/β‐catenin signaling-mediated carcinogenesis and apoptosis resistance in oral squamous cell carcinoma is not well characterized so far. In the present study, we have investigated the effect of β‐catenin depletion of the perversely activated Wnt/β-catenin signaling pathway on apoptosis resistance and tumorigenesis of the human OSCC cell line SCC-55. RT-PCR and western blot analysis demonstrated that the Wnt/β-catenin signaling pathway and its downstream targets such as DKK1 and AXIN2 are aberrantly activated in SCC-55 cells. Furthermore, upon silencing (RNA interference) of β‐catenin in SCC-55, cells became more sensitive toward the chemotherapeutic drugs and thus resulted in apoptotic cell death. Meanwhile, flow cytometry analysis confirmed the enhanced apoptosis and activation of caspases in β‐catenin RNAi cells. Besides ensuing β-catenin–siRNA transfection, the cell proliferation and cancer colony generating efficiencies are significantly impeded compared to the non-transfected cells. Furthermore, the tumorigenicity was inhibited by the downregulation of OCT-4 in β‐catenin-silenced SCC-55 cells. Altogether, Wnt/β‐catenin signaling could potentially target anti-cancer drugs to induce apoptosis and achieve a better clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document