scholarly journals Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons

Author(s):  
Maria Veronica Lipreri ◽  
Nicola Baldini ◽  
Gabriela Graziani ◽  
Sofia Avnet

As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.

2019 ◽  
Vol 12 ◽  
pp. 117864691986897 ◽  
Author(s):  
Abdulla A-B Badawy ◽  
Gilles Guillemin

The plasma kynurenine to tryptophan ([Kyn]/[Trp]) ratio is frequently used to express or reflect the activity of the extrahepatic Trp-degrading enzyme indoleamine 2,3-dioxygenase (IDO). This ratio is increasingly used instead of measurement of IDO activity, which is often low or undetectable in immune and other cells under basal conditions, but is greatly enhanced after immune activation. The use of this ratio is valid in in vitro studies, eg, in cell cultures or isolated organs, but its ‘blanket’ use in in vivo situations is not, because of modulating factors, such as supply of nutrients; the presence of multiple cell types; complex structural and functional tissue arrangements; the extracellular matrix; and hormonal, cytokine, and paracrine interactions. Determinants other than IDO may therefore be involved in vivo. These are hepatic tryptophan 2,3-dioxygenase (TDO) activity and the flux of plasma-free Trp down the Kyn pathway. In addition, conditions leading to accumulation of Kyn, eg, inhibition of activities of Kyn monooxygenase and kynureninase, could lead to elevation of the aforementioned ratio. In this review, the origin of use of this ratio will be discussed, variations in extent of its elevation will be described, evidence against its indiscriminate use will be presented, and examining determinants other than IDO activity and their correlates will be proposed for future studies.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Williams ◽  
Sanlin Robinson ◽  
Babak Alaei ◽  
Kimberly Homan ◽  
Maryam Clausen ◽  
...  

Abstract Background and Aims Questions abound regarding the translation of in vitro 2D cell culture systems to the human setting. This is especially true of the kidney in which there is a complex hierarchical structure and a multitude of cell types. While it is well accepted that extracellular matrix plays a large part in directing cellular physiology emerging research has highlighted the importance of shear stresses and flow rates too. To fully recapitulate the normal gene expression and function of a particular renal cell type how important is it to completely reconstitute their in vivo surroundings? Method To answer this question, we have cultured proximal tubular (PT) epithelial cells in a 3-dimensional channel embedded within an engineered extracellular matrix (ECM) under physiological flow that is colocalised with an adjacent channel lined with renal microvascular endothelial cells that mimic a peritubular capillary. Modifications to the system were made to allow up to 12 chips to be run in parallel in an easily handleable form. After a period of maturation under continuous flow, both cell types were harvested for RNAseq analyses. RNA expression data was compared with cells cultured under static 2-dimensional conditions on plastic or the engineered ECM. Additionally, the perfusion of glucose through this 3D vascularised PT model has been investigated in the presence and absence of known diabetes modulating agents. Results PCA of RNAseq data showed that a) static non-coated, b) static matrix-coated and c) flow matrix-coated conditions separated into 3 distinct groups, while cell co-culture had less impact. Analysis of transcriptomic signatures showed that many genes were modulated by the matrix with additional genes influenced under flow conditions. Several of these genes, classified as transporters, are of particular importance when using this model to assess drug uptake and safety implications. Co-culture regulated some interesting genes, but fewer than anticipated. Preliminary experiments are underway to monitor glucose uptake and transport between tubules under different conditions. Conclusion We have developed a medium throughput system in which matrix and flow modulate gene expression. This system can be used to study the physiology of molecular cross-talk between cells. Ongoing analysis will further consider relevance to human physiology.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


1983 ◽  
Vol 97 (6) ◽  
pp. 1882-1890 ◽  
Author(s):  
M Manthorpe ◽  
E Engvall ◽  
E Ruoslahti ◽  
F M Longo ◽  
G E Davis ◽  
...  

The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co-purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin.


2008 ◽  
Vol 13 (5) ◽  
pp. 275-279 ◽  
Author(s):  
Nicole V. Tolan ◽  
Luiza I. Genes ◽  
Dana M. Spence

Detecting multiple components from a single red blood cell (RBC) sample within a flow-based system in less than 20 min will enable improved in vitro determinations of drug efficacy and cellular response to administered drugs. Here, an example of an improved in vitro measurement involving iloprost, a pharmaceutical reported to improve blood flow, has been determined by incorporating multiple cell types onto a single device. The method allows fluid flow to address individual rows of wells contained within an 18-well microfluidic array that serves as a precursor to a 96-well microtitre plate device. The ability to better mimic the in vivo circulation by incorporating the flow of blood components, coupled with simultaneous detection and laboratory automation in place for microtitre plates, suggests that the microfluidic array presented here will allow for improved mechanistic drug research studies. Using fluorescence microscopy, concentrations of multiple metabolites present within the RBC can also be determined using the microfluidic array. The current progress toward using this device for personalized medicine is presented here.


2020 ◽  
Author(s):  
Maria-Bernadette Madel ◽  
He Fu ◽  
Dominique D. Pierroz ◽  
Mariano Schiffrin ◽  
Carine Winkler ◽  
...  

SummaryLong bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlight the dual bone phenotype of PPARγ null mice: on the one hand the increase bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explore the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibits mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.


Author(s):  
Xiaohua Duan ◽  
Yuling Han ◽  
Liuliu Yang ◽  
Benjamin E. Nilsson-Payant ◽  
Pengfei Wang ◽  
...  

Summary ParagraphThe current COVID-19 pandemic is caused by SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients typically present with respiratory symptoms including cough, dyspnea, and respiratory distress, but nearly 25% of patients have gastrointestinal indications including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with worse COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple hESC-derived colonic cell types, but highly enriched in enterocytes. Multiple cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which was further validated in vivo using a humanized mouse model. We used hPSC-derived COs in a high throughput platform to screen 1280 FDA-approved drugs against viral infection. Mycophenolic acid and quinacrine dihydrochloride were found to block the infection of SARS-CoV-2 pseudo-entry virus in COs both in vitro and in vivo, and confirmed to block infection of SARS-CoV-2 virus. This study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified drugs that blocks SARS-CoV-2 infection, suitable for rapid clinical testing.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Rahul Rai ◽  
Asish K Ghosh ◽  
Layton H Smith ◽  
Douglas E Vaughan

Background: Apelinergic signaling is a recently discovered GPCR mediated pathway. Endothelial cells are the main source of endogenous apelin (apln) while apelin receptor (aplnr) is present on multiple cell types. Since the role of endogenous apelinergic pathway within the context of senescence is largely unknown, we ask if levels of apln- aplnr vary with aging. We also investigate the effects of downregulated apln- aplnr on cellular and organismal aging. Approach and Results: To assess variations in endogenous apln- aplnr with aging, we compared their levels in 1 month (young) and 1 year old (old) WT mice. We noticed significant downregulation of apln- aplnr with chronological senescence in multiple tissues. Expression of apelin was also reduced with replicative senescence of endothelial cells. L-NAME administration, a model of stress induced senescence, also repressed aortic and cardiac apln. To address the mechanism involved in downregulation of apln- aplnr, we administered young wild type mice with Ang II. After a week of Ang II, there was significant downregulation of aortic apln and aplnr. Ang II and TGF-β also repressed apln and aplnr in vitro . Next we investigated the effects of downregulated apln on endothelial cells. In response to shRNA mediated apelin knockdown, cells exhibited slower proliferation and upregulated senescence associated markers. We observed similar results when endothelial aplnr was blocked with an antagonist, ML221. In addition, apln and aplnr deficient mice also exhibited features of cardiovascular aging, including ventricular hypertrophy and lower EF. Importantly, aplnr deficient mice at eight months of age were also hypertensive. Conclusion: We provide a systematic assessment of senescence associated variation in levels of apln- aplnr. We demonstrate the role of Ang II- TGF-β axis in downregulating apln- aplnr during chronological and stress induced senescence in vivo and in vitro . We propose a novel model of Ang II- TGF-β induced senescence. Where in, with aging Ang II and TGF-β repress endogenous apln- aplnr. Downregulation of endogenous apln- aplnr axis decreases beneficial “youthful” effects of apelin, resulting in endothelial dysfunction and accelerated organismal aging.


2019 ◽  
Vol 3 (7) ◽  
pp. 1092-1102 ◽  
Author(s):  
Barbara Costa ◽  
Tanja Eisemann ◽  
Jens Strelau ◽  
Ingrid Spaan ◽  
Andrey Korshunov ◽  
...  

Abstract Binding of the sialomucin-like transmembrane glycoprotein podoplanin (PDPN) to the platelet receptor C-type lectin-like receptor 2 induces platelet activation and aggregation. In human high-grade gliomas, PDPN is highly expressed both in tumor cells and in tumor-associated astrocytes. In glioma patients, high expression of PDPN is associated with worse prognosis and has been shown to correlate with intratumoral platelet aggregation and an increased risk of venous thromboembolism (VTE). To functionally assess the role of PDPN in platelet aggregation in vivo, we established a syngeneic orthotopic murine glioma model in C57/Bl6 mice, based on transplantation of p53- and Pten-deficient neural stem cells. This model is characterized by the presence of intratumoral platelet aggregates and by the upregulation of PDPN both in glioma cells and in astrocytes, reflecting the characteristics of human gliomas. Deletion of PDPN either in tumor cells or in astrocytes resulted in glioma formation with similar penetrance and grade compared with control mice. Importantly, only the lack of PDPN in tumor cells, but not in astrocytes, caused a significant reduction in intratumoral platelet aggregates, whereas in vitro, both cell types have similar platelet aggregation-inducing capacities. Our results demonstrate a causative link between PDPN and platelet aggregation in gliomas and pinpoint the tumor cells as the major players in PDPN-induced platelet aggregation. Our data indicate that blocking PDPN specifically on tumor cells could represent a novel strategy to prevent platelet aggregation and thereby reduce the risk of VTE in glioma patients.


Sign in / Sign up

Export Citation Format

Share Document