scholarly journals Cysteine-Rich Secretory Proteins (CRISP) are Key Players in Mammalian Fertilization and Fertility

Author(s):  
Soledad N. Gonzalez ◽  
Valeria Sulzyk ◽  
Mariana Weigel Muñoz ◽  
Patricia S. Cuasnicu

Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.

Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 22 (2) ◽  
pp. 953
Author(s):  
Angela Maria Gonella-Diaza ◽  
Everton Lopes ◽  
Kauê Ribeiro da Silva ◽  
Ricardo Perecin Nociti ◽  
Gabriella Mamede Andrade ◽  
...  

Information on molecular mechanisms through which sex-steroids regulate oviductal function to support early embryo development is lacking. Here, we hypothesized that the periovulatory endocrine milieu affects the miRNA processing machinery and miRNA expression in bovine oviductal tissues. Growth of the preovulatory follicle was controlled to obtain cows that ovulated a small follicle (SF) and subsequently bore a small corpus luteum (CL; SF-SCL) or a large follicle (LF) and large CL (LF-LCL). These groups differed in the periovulatory plasmatic sex-steroid’s concentrations. Ampulla and isthmus samples were collected on day four of the estrous cycle. Abundance of DROSHA, DICER1, and AGO4 transcripts was greater in the ampulla than the isthmus. In the ampulla, transcription of these genes was greater for the SF-SCL group, while the opposite was observed in the isthmus. The expression of the 88 most abundant miRNAs and 14 miRNAs in the ampulla and 34 miRNAs in isthmus were differentially expressed between LF-LCL and SF-SCL groups. Integration of transcriptomic and miRNA data and molecular pathways enrichment showed that important pathways were inhibited in the SF-SCL group due to miRNA control. In conclusion, the endocrine milieu affects the miRNA expression in the bovine oviduct in a region-specific manner.


2005 ◽  
Vol 34 (3) ◽  
pp. 889-908 ◽  
Author(s):  
S Bauersachs ◽  
S E Ulbrich ◽  
K Gross ◽  
S E M Schmidt ◽  
H H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. It undergoes typical changes during the sexual/oestrous cycle, which are regulated by the ovarian hormones progesterone and oestrogen. To identify the underlying molecular mechanisms we have performed the first holistic screen of transcriptome changes in bovine intercaruncular endometrium at two stages of the cycle – end of day 0 (late oestrus, low progesterone) and day 12 (dioestrus, high progesterone). A combination of subtracted cDNA libraries and cDNA array hybridisation revealed 133 genes showing at least a 2-fold change of their mRNA abundance, 65 with higher levels at oestrus and 68 at dioestrus. Interestingly, genes were identified which showed differential expression between different uterine sections as well. The most prominent example was the UTMP (uterine milk protein) mRNA, which was markedly upregulated in the cranial part of the ipsilateral uterine horn at oestrus. A Gene Ontology classification of the genes with known function characterised the oestrus time by elevated expression of genes, for example related to cell adhesion, cell motility and extracellular matrix and the dioestrus time by higher expression of mRNAs encoding for a variety of enzymes and transport proteins, in particular ion channels. Searching in pathway databases and literature data-mining revealed physiological processes and signalling cascades, e.g. the transforming growth factor-β signalling pathway and retinoic acid signalling, which are potentially involved in the regulation of changes of the endometrium during the oestrous cycle.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Stefan Bauersachs ◽  
Susanne E Ulbrich ◽  
Karin Gross ◽  
Susanne E M Schmidt ◽  
Heinrich H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.


2011 ◽  
Vol 44 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Débora J Cohen ◽  
Julieta A Maldera ◽  
Mariana Weigel Muñoz ◽  
Juan I Ernesto ◽  
Gustavo Vasen ◽  
...  

1998 ◽  
Vol 332 (3) ◽  
pp. 593-610 ◽  
Author(s):  
Peter ARVAN ◽  
David CASTLE

Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J.E. Collins ◽  
J.E. Lorimer ◽  
D.R. Garrod ◽  
S.C. Pidsley ◽  
R.S. Buxton ◽  
...  

The molecular mechanisms regulating the biogenesis of the first desmosomes to form during mouse embryogenesis have been studied. A sensitive modification of a reverse transcriptase-cDNA amplification procedure has been used to detect transcripts of the desmosomal adhesive cadherin, desmocollin. Sequencing of cDNA amplification products confirmed that two splice variants, a and b, of the DSC2 gene are transcribed coordinately. Transcripts were identified in unfertilized eggs and cumulus cells and in cleavage stages up to the early 8-cell stage, were never detected in compact 8-cell embryos, but were evident again either from the 16-cell morula or very early blastocyst (approx 32-cells) stages onwards. These two phases of transcript detection indicate DSC2 is encoded by maternal and embryonic genomes. Previously, we have shown that desmocollin protein synthesis is undetectable in eggs and cleavage stages but initiates at the early blastocyst stage when desmocollin localises at, and appears to regulate assembly of, nascent desmosomes that form in the trophectoderm but not in the inner cell mass (Fleming, T. P., Garrod, D. R. and Elsmore, A. J. (1991), Development 112, 527–539). Maternal DSC2 mRNA is therefore not translated and presumably is inherited by blastomeres before complete degradation. Our results suggest, however, that initiation of embryonic DSC2 transcription regulates desmocollin protein expression and thereby desmosome formation. Moreover, data from blastocyst single cell analyses suggest that embryonic DSC2 transcription is specific to the trophectoderm lineage. Inhibition of E-cadherin-mediated cell-cell adhesion did not influence the timing of DSC2 embryonic transcription and protein expression. However, isolation and culture of inner cell masses induced an increase in the amount of DSC2 mRNA and protein detected. Taken together, these results suggest that the presence of a contact-free cell surface activates DSC2 transcription in the mouse early embryo.


2020 ◽  
Vol 21 (7) ◽  
pp. 2538 ◽  
Author(s):  
Andrey L. Karamyshev ◽  
Elena B. Tikhonova ◽  
Zemfira N. Karamysheva

Secretory proteins are synthesized in a form of precursors with additional sequences at their N-terminal ends called signal peptides. The signal peptides are recognized co-translationally by signal recognition particle (SRP). This interaction leads to targeting to the endoplasmic reticulum (ER) membrane and translocation of the nascent chains into the ER lumen. It was demonstrated recently that in addition to a targeting function, SRP has a novel role in protection of secretory protein mRNAs from degradation. It was also found that the quality of secretory proteins is controlled by the recently discovered Regulation of Aberrant Protein Production (RAPP) pathway. RAPP monitors interactions of polypeptide nascent chains during their synthesis on the ribosomes and specifically degrades their mRNAs if these interactions are abolished due to mutations in the nascent chains or defects in the targeting factor. It was demonstrated that pathological RAPP activation is one of the molecular mechanisms of human diseases associated with defects in the secretory proteins. In this review, we discuss recent progress in understanding of translational control of secretory protein biogenesis on the ribosome and pathological consequences of its dysregulation in human diseases.


Placenta ◽  
2019 ◽  
Vol 83 ◽  
pp. e48-e49
Author(s):  
Mariana Weigel Muñoz ◽  
Ludmila Curci ◽  
Nicolas Brukman ◽  
Daniela Rojo ◽  
Marcelo Rubinstein ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jie Sheng ◽  
Nick K. Olrichs ◽  
Willie J. Geerts ◽  
Dora V. Kaloyanova ◽  
J. Bernd Helms

Abstract Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-Related 1 proteins) are characterized by the presence of a structurally conserved CAP domain. The common structure-function relationship of this domain is still poorly understood. In this study, we unravel specific molecular mechanisms modulating the quaternary structure of the mammalian CAP protein GAPR-1 (Golgi-Associated plant Pathogenesis-Related protein 1). Copper ions are shown to induce a distinct amyloid-like aggregation pathway of GAPR-1 in the presence of heparin. This involves an immediate shift from native multimers to monomers which are prone to form amyloid-like fibrils. The Cu2+-induced aggregation pathway is independent of a conserved metal-binding site and involves the formation of disulfide bonds during the nucleation process. The elongation process occurs independently of the presence of Cu2+ ions, and amyloid-like aggregation can proceed under oxidative conditions. In contrast, the Zn2+-dependent aggregation pathway was found to be independent of cysteines and was reversible upon removal of Zn2+ ions. Together, our results provide insight into the regulation of the quaternary structure of GAPR-1 by metal ions and redox homeostasis with potential implications for regulatory mechanisms of other CAP proteins.


Sign in / Sign up

Export Citation Format

Share Document