scholarly journals Recent Advances in Cyanine-Based Phototherapy Agents

2021 ◽  
Vol 9 ◽  
Author(s):  
Kubra Bilici ◽  
Sultan Cetin ◽  
Eda Aydındogan ◽  
Havva Yagci Acar ◽  
Safacan Kolemen

Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye–based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.

Nanoscale ◽  
2020 ◽  
Author(s):  
Xinyi Lin ◽  
Xiaoyan Wang ◽  
Jiong Li ◽  
Linsheng Cai ◽  
Fangyu Liao ◽  
...  

Recently, photothermal therapy (PTT) in the second near-infrared (NIR-II) biowindow has emerged as a promising treatment modality, however, its therapeutic outcomes are still limited by heterogeneous heat distribution and insufficient...


Author(s):  
Yang Qiao ◽  
Rahul A. Sheth ◽  
Alda Tam

AbstractIntratumoral (IT) administration of immunotherapy is a promising treatment strategy under clinical development for gastrointestinal malignancies. Due to its targeted nature, IT immunotherapies can generate regional proinflammatory microenvironments that result in the focal recruitment of tumor-specific immune cells. Precision targeting of tumors via IT immunotherapy injection theoretically produces a more robust immune response to the treated tumor itself and to distant metastatic tumors that share tumor-specific antigens with those of the treated tumor, while also minimizing the priming of the adaptive immune system to nonspecific antigens. Diverse arrays of IT immunotherapeutic agents including but not limited to lyophilized bacteria, viral vectors, cellular-based agents, molecules, and peptides, both as monotherapies and in combination with systemic immunotherapies, are in various stages of preclinical and clinical development. In this review, we summarize the current state of the art for IT immunotherapy and highlight potential future directions and their relevance to image-guided interventionalists.


Nanoscale ◽  
2021 ◽  
Author(s):  
Matias Luis Picchio ◽  
Julian Bergueiro Álvarez ◽  
Stefanie Wedepohl ◽  
Roque J Minari ◽  
Cecilia Ines Alvarez Igarzabal ◽  
...  

After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR...


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3822
Author(s):  
Adam Włodarczyk ◽  
Wiesław Jerzy Cubała ◽  
Aleksandra Wielewicka

Anxiety disorders comprise persistent, disabling conditions that are distributed across the globe, and are associated with the high medical and socioeconomic burden of the disease. Within the array of biopsychosocial treatment modalities—including monoaminergic antidepressants, benzodiazepines, and CBT—there is an unmet need for the effective treatment of anxiety disorders resulting in full remission and recovery. Nutritional intervention may be hypothesized as a promising treatment strategy; in particular, it facilitates relapse prevention. Low-carbohydrate high-fat diets (LCHF) may provide a rewarding outcome for some anxiety disorders; more research is needed before this regimen can be recommended to patients on a daily basis, but the evidence mentioned in this paper should encourage researchers and clinicians to consider LCHF as a piece of advice somewhere between psychotherapy and pharmacology, or as an add-on to those two.


Theranostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 2260-2272 ◽  
Author(s):  
Zi Long ◽  
Jun Dai ◽  
Qinyu Hu ◽  
Quan Wang ◽  
Shijie Zhen ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Zhou ◽  
Xiaodong Zeng ◽  
Anguo Li ◽  
Wenyi Zhou ◽  
Lin Tang ◽  
...  

AbstractNIR-II fluorophores have shown great promise for biomedical applications with superior in vivo optical properties. To date, few small-molecule NIR-II fluorophores have been discovered with donor-acceptor-donor (D-A-D) or symmetrical structures, and upconversion-mitochondria-targeted NIR-II dyes have not been reported. Herein, we report development of D-A type thiopyrylium-based NIR-II fluorophores with frequency upconversion luminescence (FUCL) at ~580 nm upon excitation at ~850 nm. H4-PEG-PT can not only quickly and effectively image mitochondria in live or fixed osteosarcoma cells with subcellular resolution at 1 nM, but also efficiently convert optical energy into heat, achieving mitochondria-targeted photothermal cancer therapy without ROS effects. H4-PEG-PT has been further evaluated in vivo and exhibited strong tumor uptake, specific NIR-II signals with high spatial and temporal resolution, and remarkable NIR-II image-guided photothermal therapy. This report presents the first D-A type thiopyrylium NIR-II theranostics for synchronous upconversion-mitochondria-targeted cell imaging, in vivo NIR-II osteosarcoma imaging and excellent photothermal efficiency.


Nanophotonics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 2331-2346 ◽  
Author(s):  
Na Kong ◽  
Li Ding ◽  
Xiaobin Zeng ◽  
Junqing Wang ◽  
Wenliang Li ◽  
...  

AbstractTwo-dimensional (2D) nanosheet (NS)-based photothermal agents (PTAs), such as transition-metal dichalcogenides, have shown immense potential for their use in cancer photothermal therapy (PTT). However, the nano-bio interaction study regarding these NS-based PTAs is still in its infancy. In this study, we used WS2-PEG NS-based PTA as an example to provide comprehensive insights into the experimental understanding of their fate in cancer cells. The data revealed that three different endocytosis pathways (macropinocytosis, clathrin-dependent, and caveolae-dependent endocytosis), autophagy-mediated lysosome accumulation, and exocytosis-induced excretion contribute to the integrated pathways of WS2-PEG NSs within cells. These pathways are consistent with our previous reports on MoS2-PEG NS-based drug delivery platform, indicating that the composition difference of 2D NSs with PEGylation may have little influence on their intercellular fate. Moreover, by blocking the revealed exocytosis pathway-mediated secretion of WS2 NSs in tumor cells, an effective approach is proposed to attain enhanced photothermal therapeutic outcomes with low doses of WS2 NSs and under a low power of a near-infrared (NIR) laser. We expect that the exocytosis inhibition strategy may be a universal one for 2D NSs to achieve combination cancer therapy. This study may also provide more experimental basis for the future development of 2D NS’s application in biomedicine (e.g. PTT).


Sign in / Sign up

Export Citation Format

Share Document