scholarly journals Plasmonic Heating-Promoted Photothermal Synthesis of α-Cyanoacrylonitriles Over Au/h-BN Catalysts

2021 ◽  
Vol 9 ◽  
Author(s):  
Ce Liang ◽  
Yuanyuan Zhang ◽  
Bin Zhang ◽  
Xin-Miao Liu ◽  
Guo-Lin Gao ◽  
...  

Plasmonic nanoparticle-involved materials play an essential role in the field of photothermal conversion. Herein, we report the application of photothermal heterogeneous catalysts consisting of gold nanoparticles decorated on defect-rich h-BN sheets (Au/h-BN) for the photocatalytic synthesis of α-cyanoacrylonitriles under mild conditions. It has been demonstrated the–NH2 groups present in the defect-rich h-BN act as the catalytically active sites, while plasmonic heating from the gold nanoparticles can drive the reaction by providing local heat. Au/h-BN catalyst can work for a broad substrate scope in the synthesis of α-cyanoacrylonitriles, and a plausible –NH2 group-involved reaction mechanism has been proposed. This work may open up new avenues in photothermal catalysis by combining plasmonic materials and catalytic sites in one system.

2017 ◽  
Vol 7 (12) ◽  
pp. 2467-2473 ◽  
Author(s):  
Yaxin Chen ◽  
Zichenxi Dong ◽  
Zhiwei Huang ◽  
Meijuan Zhou ◽  
Jiayi Gao ◽  
...  

The electronic states of the catalytically active sites of HWO were tuned by Mo framework substitution.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chuanqiang Wu ◽  
Shiqing Ding ◽  
Daobin Liu ◽  
Dongdong Li ◽  
Shuangming Chen ◽  
...  

Numerous experiments have demonstrated that the metal atom is the active center of monoatomic catalysts for hydrogen evolution reaction (HER), while the active sites of nonmetal doped atoms are often neglected. By combining theoretical prediction and experimental verification, we designed a unique ternary Ru-N4-P coordination structure constructed by monodispersed Ru atoms supported on N,P dual-doped graphene for highly efficient hydrogen evolution in acid solution. The density functional theory calculations indicate that the charge polarization will lead to the most charge accumulation at P atoms, which results in a distinct nonmetallic P active sites with the moderate H∗ adsorption energy. Notably, these P atoms mainly supply highly efficient catalytic sites with ultrasmall absorption energy of 0.007 eV. Correspondingly, the Ru-N4-P demonstrated outstanding HER performance not only in an acidic condition but also in alkaline environment. Notably, the performance of Ru-NPC catalyst at high current is even superior to the commercial Pt/C catalysts, whether in acidic or alkaline medium. Our in situ synchrotron radiation infrared spectra demonstrate that a P-Hads intermediate is continually emerging on the Ru-NPC catalyst, actively proving the nonmetallic P catalytically active site in HER that is very different with previously reported metallic sites.


2016 ◽  
Vol 3 (4) ◽  
pp. 520-533 ◽  
Author(s):  
Xue Wang ◽  
Aleksey Ruditskiy ◽  
Younan Xia

Abstract Nanoframes are unique for their 3D, highly open architecture. When made of noble metals, they are attractive for use as heterogeneous catalysts because of their large specific surface areas, high densities of catalytically active sites and low vulnerability toward sintering. They promise to enhance the catalytic activity and durability while reducing the material loading and cost. For nanoframes composed of Au and/or Ag, they also exhibit highly tunable plasmonic properties similar to those of nanorods. This article presents a brief account of recent progress in the design, synthesis and utilization of noble-metal nanoframes. We start with a discussion of the synthetic strategies, including those involving site-selected deposition and etching, as well as dealloying of both hollow and solid nanocrystals. We then highlight some of the applications enabled by noble-metal nanoframes. Finally, we discuss the challenges and trends with regard to future development.


2020 ◽  
Vol 8 (19) ◽  
pp. 9677-9683 ◽  
Author(s):  
Wenjing Xu ◽  
Tianjun Zhang ◽  
Risheng Bai ◽  
Peng Zhang ◽  
Jihong Yu

The modulation and determination of the coordination environments of Ti active sites in titanosilicate zeolites are key challenges in the rational design of high-performance heterogeneous catalysts.


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


2018 ◽  
Author(s):  
Chaofeng Huang ◽  
Jing Wen ◽  
Yanfei Shen ◽  
Fei He ◽  
Li Mi ◽  
...  

<a></a><a>As a metal-free conjugated polymer, carbon nitride (CN) has attracted tremendous attention as heterogeneous (photo)catalysts. </a><a></a><a>By following prototype of enzymes, making all catalytic sites of accessible via homogeneous reactions is a promising approach toward maximizing CN activity, but hindered due to </a><a></a><a>the poor insolubility of CN</a>. Herein, we report the dissolution of CN in environment-friendly methane sulfonic acid and the homogeneous photocatalysis driven by CN for the first time with the activity boosted up to 10-times, comparing to the heterogeneous counterparts. Moreover, facile recycling and reusability, the <a>hallmark</a> of heterogeneous catalysts, were kept for the homogeneous CN photocatalyst via reversible precipitation using poor solvents. It opens new vista of CN in homogeneous catalysis and offers a successful example of polymeric catalysts in bridging gaps of homo/heterogeneous catalysis.


2019 ◽  
Author(s):  
Nan An ◽  
Diana Ainembabazi ◽  
Kavya Samudrala ◽  
Christopher Reid ◽  
Kare Wilson ◽  
...  

<p>Here we report the synthesis, characterization and activity of tunable Pd-doped hydrotalcites (Pd-HTs) for the decarbonylation of furfural, hydroxymethylfurfural (HMF), aromatic and aliphatic aldehydes under microwave conditions. The decarbonylation activity reported is a notable improvement over prior heterogeneous catalysts for this process. Furfural decarbonylation is optimized in a benign solvent compatible with biomass processing - ethanol, under relatively mild conditions and short reaction times. HMF selectively affords excellent yields of furfuryl alcohol with no humin formation, but longer reaction can also afford furan via tandem alcohol dehydrogenation and decarbonylation. Yields of substituted benzaldehydes are related to calculated Mulliken charge of the carbonyl carbon. The activity and selectivity differences can be traced to loading-dependent differences in Pd speciation on the catalysts. Poisoning studies show inverse correlation between Pd loading and metal leaching: Pd-HTs with lowest Pd loading, which consist of highly dispersed and oxidized Pd species, operate heterogeneously with negligible metal leaching. Recycling experiments are consistent with this trend, offering potential for further optimization to improve robustness.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Sign in / Sign up

Export Citation Format

Share Document