scholarly journals Fast Broad-Spectrum Staining and Photodynamic Inhibition of Pathogenic Microorganisms by a Water-Soluble Aggregation-Induced Emission Photosensitizer

2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Zhou ◽  
Xiaoming Lyu ◽  
Bing Cao ◽  
Xueping Liu ◽  
Jing Liu ◽  
...  

Pathogenic microorganisms pose great challenges to public health, which is constantly urgent to develop extra strategies for the fast staining and efficient treatments. In addition, once bacteria form stubborn biofilm, extracellular polymeric substance (EPS) within biofilm can act as protective barriers to prevent external damage and inward diffusion of traditional antibiotics, which makes it frequently develop drug-resistant ones and even hard to treat. Therefore, it is imperative to develop more efficient methods for the imaging/detection and efficient inhibition of pathogenic microorganisms. Here, a water-soluble aggregation-induced emission (AIE)-active photosensitizer TPA-PyOH was employed for fast imaging and photodynamic treatment of several typical pathogens, such as S. aureus, methicillin-resistant Staphylococcus aureus, L. monocytogenes, C. albicans, and E. coli. TPA-PyOH was non-fluorescent in water, upon incubation with pathogen, positively charged TPA-PyOH rapidly adhered to pathogenic membrane, thus the molecular motion of TPA-PyOH was restricted to exhibit AIE-active fluorescence for turn-on imaging with minimal background. Upon further white light irradiation, efficient reactive oxygen species (ROS) was in-situ generated to damage the membrane and inhibit the pathogen eventually. Furthermore, S. aureus biofilm could be suppressed in vitro. Thus, water-soluble TPA-PyOH was a potent AIE-active photosensitizer for fast fluorescent imaging with minimal background and photodynamic inhibition of pathogenic microorganisms.

2000 ◽  
Vol 182 (9) ◽  
pp. 2604-2610 ◽  
Author(s):  
Gillian Newman ◽  
Elliott Crooke

ABSTRACT Given the lack of a nucleus in prokaryotic cells, the significance of spatial organization in bacterial chromosome replication is only beginning to be fully appreciated. DnaA protein, the initiator of chromosomal replication in Escherichia coli, is purified as a soluble protein, and in vitro it efficiently initiates replication of minichromosomes in membrane-free DNA synthesis reactions. However, its conversion from a replicatively inactive to an active form in vitro occurs through its association with acidic phospholipids in a lipid bilayer. To determine whether the in situ residence of DnaA protein is cytoplasmic, membrane associated, or both, we examined the cellular location of DnaA using immunogold cryothin-section electron microscopy and immunofluorescence. Both of these methods revealed that DnaA is localized at the cell membrane, further suggesting that initiation of chromosomal replication in E. coli is a membrane-affiliated event.


2019 ◽  
Author(s):  
Yuqing Chen ◽  
Wei Wu ◽  
Zeqiao Xu ◽  
Cheng Jiang ◽  
Shuang Han ◽  
...  

Abstract Background: Treatment of multidrug-resistant (MDR) bacterial infection is a great challenge in public health. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as anti-bacterial agent. Methods: Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in-vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. Firstly, minimum inhibitory concentrations (MICs) of different antimicrobials were tested against MDR E. Coli strains. Then, bacteria viability assessments were conducted with different nanomaterials in Luria-Bertani (LB) broth. Afterwards, photothermal irradiation was conducted on MDR E. coli with lower GO-Ag concentration. At last, fluorescent imaging and morphology characterization using scanning electron microscope (SEM) were done to find the possible cause of antibacterial effect. Results: GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials. Synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. The remained bacteria viabilities were 4.4% and 4.1% respectively for different bacteria strains with GO-Ag concentration at 14.0 µg mL-1. In addition, GO-Ag nanocomposites have strong absorption in the near-infrared field and can convert the electromagnetic energy to heat. With the use of this photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites concentration as low as 7.0 µg mL-1. Fluorescent imaging and morphology characterization were used to analyze bacteria living status, which uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Conclusions: GO-Ag nanocomposites are proved to be efficient antibacterial agent against multi-drug resistant E. coli. Their strong antibacterial effect arises from inherent antibacterial property and photothermal effect that provides aid for bacteria killing.


2021 ◽  
Vol 74 (9) ◽  
pp. 2109-2111
Author(s):  
Evheniia A. Shtaniuk ◽  
Oleksandra O. Vovk ◽  
Larisa V. Krasnikova ◽  
Yuliia I. Polyvianna ◽  
Tetiana I. Kovalenko

The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method (“well” method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 457 ◽  
Author(s):  
Gabriela N. Tenea ◽  
Daniela Olmedo ◽  
Clara Ortega

Worldwide, street vending commerce has grown exponentially, representing in some countries, including Ecuador, a significant proportion of food consumed by the urban population. Pineapple is one of the common fruits sold as ready-to-eat slices by ambulant vendors in the street or on public transport at risk of contamination by various microorganisms. Previously, we selected Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis Gt28 strains producing peptides with high capacity to inhibit pathogen growth in vitro. In this study, the effect of different edited formulations containing a mixture of Cys5-4/Gt28 peptides was evaluated in vitro and ex vitro against a pathogenic cocktail containing E. coli (2), Salmonella (2) and Shigella (1). The growth of bacterial cocktail co-inoculated with cell-free supernatant containing peptides (formulation T1) and precipitated peptides (formulation T6), in a ratio of Cys5-4/Gt28:1:1 (v/v), results in a decrease of total cell viability with 1.85 and 1.2 log CFU/mL orders of magnitude at 6 h of incubation. About the same decrease (1.9 log CFU/g) was observed when pineapple slices artificially inoculated with the pathogenic cocktail were coated with T1 formulation, indicating the capacity to diminish simultaneous pathogens in situ, thus demonstrating its great biological control and protection. However, the E. coli cell counts reduced by 2.08 log CFU/g while Salmonella and Shigella cell counts reduced by 1.43 and 1.91 log CFU/g, respectively, at 5 days of refrigeration. In the untreated pineapple slices, the total cell density was maintained during storage, suggesting the adaptation of the pathogens to the fruit matrix. The peptide-based formulation exerted a bacteriolytic mode of action inducing pathogenic cell death. The results indicate that coating pineapple slices with peptide-based formulation is a promising approach to protect them from further contamination by microbial spoilage as well as an alternative to increase the food safety.


2004 ◽  
Vol 186 (20) ◽  
pp. 6845-6854 ◽  
Author(s):  
Koichi Mori ◽  
Reiko Bando ◽  
Naoki Hieda ◽  
Tetsuo Toraya

ABSTRACT The holoenzyme of adenosylcobalamin-dependent ethanolamine ammonia lyase undergoes suicidal inactivation during catalysis as well as inactivation in the absence of substrate. The inactivation involves the irreversible cleavage of the Co-C bond of the coenzyme. We found that the inactivated holoenzyme undergoes rapid and continuous reactivation in the presence of ATP, Mg2+, and free adenosylcobalamin in permeabilized cells (in situ), homogenate, and cell extracts of Escherichia coli. The reactivation was observed in the permeabilized E. coli cells carrying a plasmid containing the E. coli eut operon as well. From coexpression experiments, it was demonstrated that the eutA gene, adjacent to the 5′ end of ethanolamine ammonia lyase genes (eutBC), is essential for reactivation. It encodes a polypeptide consisting of 467 amino acid residues with predicted molecular weight of 49,599. No evidence was obtained that shows the presence of the auxiliary protein(s) potentiating the reactivation or associating with EutA. It was demonstrated with purified recombinant EutA that both the suicidally inactivated and O2-inactivated holoethanolamine ammonia lyase underwent rapid reactivation in vitro by EutA in the presence of adenosylcobalamin, ATP, and Mg2+. The inactive enzyme-cyanocobalamin complex was also activated in situ and in vitro by EutA under the same conditions. Thus, it was concluded that EutA is the only component of the reactivating factor for ethanolamine ammonia lyase and that reactivation and activation occur through the exchange of modified coenzyme for free intact adenosylcobalamin.


2017 ◽  
Vol 32 (5) ◽  
pp. 528-541 ◽  
Author(s):  
Joshua T Davis ◽  
Paul D Hamilton ◽  
Nathan Ravi

Our objective is to improve on our previous work developing thiol-containing water-soluble copolyacrylamides that form hydrogels in situ for use as vitreous substitutes. In this study, we evaluate the incorporation of acrylic acid by varying the feed ratio of acrylic acid monomer from 0 to 40 mol% in combination with acrylamide, and bis-acryloylcystamine as the reversible cross-linker. After polymerization, the formed copolymer hydrogels were reduced with dithiothreitol to cleave the disulfide cross-linkers. Purified, lyophilized copolymers were made in a concentration range of 12.5–17.5 mg/mL (polymer in deionized water) and were gelled by oxidation. Chemical, physical, optical, and rheological characterizations along with in vitro biocompatibility studies were performed using thiazolyl blue and Electric Cell–substrate Impedance Sensing. Increasing the percentage of acrylic acid caused the polymer to gel at 12.5 mg/mL as opposed to 20 mg/mL without acrylic acid. Storage modulus values covered the range of natural vitreous (1–108 Pa). Biocompatibility testing in tissue culture with retinal pigment epithelial cells (ARPE-19) showed no toxicity at 10 mg/mL or less when compared to controls, higher concentrations. In contrast to our previously reported copolyacrylamide hydrogels, these hydrogels remain optically clear and gel at lower concentrations and have the potential for use as vitreous substitutes.


2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


Sign in / Sign up

Export Citation Format

Share Document