scholarly journals Antimicrobial effects of fruit sauces on some pathogenic bacteria in vitro and on chicken breast meat

2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.

Author(s):  
Ikpefan E. O. ◽  
Enwa F. O. ◽  
Emebrado O.

This study was carried out as a result of the belief that certain medicinal plants have antimicrobial activity against pathogenic bacteria and fungi species, hence the in vitro antimicrobial activity of the extract and fractions of Euphorbia graminea was performed against bacteria (Staphyloccocus aureus, Escherichia coli, Pseudomonas aeruginosa) and fungal (Candida albican) non-clinical isolates. The methanol extract of Euphorbia graminea was fractionated via solvent-solvent partitioning and vacuum liquid chromatographic techniques and the corresponding fractions were tested for phytochemicals and were biologically tested against the organisms employing the agar well diffusion method. While the extract and partitioned fractions were tested at concentrations between 4.69-300 mg/mL, the vlc subfractions were tested at 12.50-200 mg/mL against the organisms. The MIC of the active vlc subfractions was also tested (9.38-37.5 mg/mL). The alkaloids as well as glycosides, tannins, terpenes and steroids were detected among the extracts and fractions of E. graminea. The extract showed mild activities against the test organisms with the highest zone of inhibition of 7.00 mm recorded at 300 mg/mL against S.aureus. The activities of both extract at 300 mg/mL, showed notable increase against the organisms used, with zones of inhibition of the aqueous extract been 10.50 and 9.50mm and for the chloroform extract, 16.50 and 13.05mm (S. aureus and E. coli respectively). The vlc sub-fraction 6-8 (C) among the other subfractions was more potent against S. aureus, E. coli and C. albican as 16.50, 12.00 and 0.50 mm zones of inhibition were recorded at 100 mg/mL. The zones of inhibition against these organisms later increased to 20.00, 18.50 and 15.00 mm at 200 mg/mL. This study has highlighted the fact that the plant E. graminea has antimicrobial activity which occurs more in the partitioned chloroform and its chromatographic vacuum liquid subfraction (6-8) that gave the highest activity. However, in order to isolate the active biological components and to determine their safety in drug production, further studies are needed.


2019 ◽  
Vol 9 (1) ◽  
pp. 225-228
Author(s):  
Jaswinder Mehta ◽  
Peenu Mahendra Joshi ◽  
Priyanka Kushwaha ◽  
Geeta Parkhe

The aim of present study was to estimate the in vitro antioxidant potential and antimicrobial activity of hydroalcoholic extract of Vernonia cinerea. Antioxidant activity was assessed by using 2, 2- diphenyl-1-picryl-hydrazyl (DPPH) assay using ascorbic acid as standard antioxidant. The extract was found to scavenge effectively the free radicals. The total flavonoid contents were determined by established methods and were found to be 0.547 mg/100mg in quercitin equivalents. Antimicrobial activity was performed against 2 stains of human pathogenic bacteria by well diffusion method. Hydroalcoholic extract of Vernonia cinerea showed good antimicrobial activity against gram positive bacteria. The antioxidant activities may be attributed to the presence of significant amounts of flavonoid compounds. Results indicated that hydroalcoholic extract of Vernonia cinerea possess significant antioxidant effect in dose dependent manner, followed by the hydroalcoholic extract of Vernonia cinerea possessed good antimicrobial activity. Keywords: Antioxidant activity, Radical scavenging activity, Free radicals, Antimicrobial activity.


Author(s):  
Oluwaseun Raphael Aderele ◽  
Adekunle Kareem Rasaq ◽  
Johnson Oshiobugie Momoh

Aim: The study evaluates the in-vitro antimicrobial activity of Hunteria umbellata against Escherichia coli, Staphylococcus aureus and Streptococcus sp. Place and Duration of Study: The study was carried out for three months in 2019 in Biochemistry Laboratory, Department of Chemical Sciences (Biochemistry unit), School of Pure and Applied Sciences, Lagos State Polytechnic, Ikorodu, Lagos- Nigeria. Methodology: The qualitative and GC-MS analysis of Hunteria umbellata methanolic seed extract were determined using standard procedure. The antimicrobial activity was evaluated by the disc diffusion method and agar well diffusion method. The experimental data was resampled 1000 times to allow for higher degrees of freedom in carrying out t-test to test for the difference of the effect of in-vitro antimicrobial activity of H. umbellata against E. coli, S. aureus and Streptococcus sp using mathematical software R language (3.6.1 version). Line plots, histogram and t-test are used to explain the effect of antimicrobial activity of H. umbellate on the selected bacteria. MIC and MBC were determined using standard methods. Results: The Phytochemical analysis of methanolic seed extract of Hunteria umbellata showed the presence of secondary metabolites like saponins, tannins, flavonoids, steroids, phenol among others. GC-MS assay of the H. umbellata seed extract revealed the presence of eight different compounds. Agar well diffusion method was characterized by inhibition zones of 18.36±0.87, 19.13±1.03 and 21.62±2.53 mm for E.coli, S. aureus and Streptococcus sp respectively at 300 mg/ml-1 and 21.70± 1.60, 23.83± 2.64 and 28.57± 1.52 for E.coli, S. aureus and Streptococcus sp respectively at 500 mg/ml. The results of the analysis show that there is a significant difference between the effects of in-vitro antimicrobial activity of H. umbellate on 3001 and 500 mg/ml on each bacteria tested at 5% level of significance. E.coli, S. aureus and Streptococcus sp were tested against 12 standard antimicrobial agents, of which six was sensitive and another six was resistance to E .coli, seven was sensitive, and five was resistance to S. aureus while four was resistance and eight sensitive to Streptococcus sp. The minimum inhibitory concentration (MIC) for E.coli, S. aureus, and  Streptococcus sp were 250, 125 and 31.25 mgml-1 while their minimum bactericidal concentration (MBC) were 500, 250 and 125 respectively. MIC and MBC tests showed that H. umbellata methanolic seed extract had noticeable bactericidal effects with MBC/MIC values ranging between 2 to 4. The extract has strong potency against these microorganisms with Streptococcus sp being the most susceptible. Conclusions: Hunteria umbellata has potential as natural therapeutic agents against E. coli, S. aureus and Streptococcus sp and they may prevent pathogenic diseases.


Author(s):  
B. R. Malathy ◽  
Sweetlin Ajitha P ◽  
Sangeetha K. S ◽  
Swetha Thampy ◽  
Kamala G

Essential oils (EOs) are natural extracts from the seeds, stems, roots, flowers, bark and other parts of the plant prepared by steam distillation. They are complex, volatile, natural compounds formed by aromatic plants as secondary metabolites. They are known for their bactericidal, virucidal, fungicidal, sedative, anti-inflammatory, analgesic, spasmolytic and locally anesthetic properties. They are generally composed of a combination of substances like terpenes, phenolics, aldehydes or alcohols. The complex composition and different mechanisms of action of EOs may be an advantage over other antimicrobials to prevent the development of resistance of pathogenic bacteria. With this background, the aim of this study was to evaluate the antimicrobial activity of five essential oils like basil, lime, rosemary, thyme and canada balsam against 14 microbes. The effects of essential oil on the selected microbes were determined by agar well diffusion method. The zone of inhibition was observed and measured in millimeter. Essential oils which showed inhibitory diameter >15 mm were further tested to determine the minimum inhibitory concentration (MIC). S. aureus, E. coli, S. mutans, S. sanguinis, C. albicans and M. furfur were inhibited by all essential oils. K. pneumoniae, P. aeruginosa and E .faecalis were inhibited only by thyme and not by other essential oils. The MIC values ranged from 50% to 0.10%. The least MIC value of 0.10% was shown by thyme and basil to S. aureus, thyme to E.coli and all essential oils against C. albicans except lime.


2015 ◽  
Vol 43 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Mihaela NICULAE ◽  
Laura STAN ◽  
Emoke PALL ◽  
Anamaria Ioana PAȘTIU ◽  
Iulia Maria BALACI ◽  
...  

The study was aimed to characterize the chemical composition and the antimicrobial activity of Romanian propolis ethanolic extracts (EEP) against antibiotic-sensitive and antibiotic-resistant E. coli strains isolated from bovine mastitis. The preliminary antimicrobial screening was performed by a disk diffusion method, followed by determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) based on broth microdilution assay; further, the synergistic action of propolis with antimicrobial drugs was assessed by a disk diffusion method on agar containing subinhibitory concentrations of propolis. For the chemical characterisation of EEP, the flavonoids (flavones/flavonols, flavanones/dihydroflavonols) and total phenolics were evaluated by spectrophotometric methods. The phenolic compounds of these extracts were also determined using HPLC. The results indicated for Romanian propolis ethanolic extracts the typical poplar composition profile with flavonoids and phenolic acids as main biological active compounds, with chromatographic analysis data confirmed also spectrophotometrically. In addition, positively correlated with the chemical composition, a strong antimicrobial efficacy was exhibited towards E. coli strains, along with interesting synergistic interaction with antibiotics that can be further investigated to obtain propolis-based formulation with antibacterial properties. Subsequent in vitro and in vivo studies evaluating the safety and efficacy are intended to consider propolis in veterinary therapeutic protocols.


2006 ◽  
Vol 20 (4) ◽  
pp. 303-306 ◽  
Author(s):  
Daniela Cristina Miyagak ◽  
Elaine Manso Oliveira Franco de Carvalho ◽  
Carlos Roberto Colombo Robazza ◽  
Jorge Kleber Chavasco ◽  
Gustavo Labegalline Levorato

The purpose of this study is to evaluate the antimicrobial activity of the endodontic sealers: N-Rickert, Sealapex, AH Plus, Mineral Trioxide Aggregate (MTA) and portland cement. The Agar diffusion method was used in plates previously inoculated with the following microorganisms: C. albicans, S. aureus, E. faecalis, E. coli. The diameters of microbial inhibition zones were measured after 24 hours of incubation in kiln at 37°C. According to the methodology used, it was possible to conclude that only the sealers AH Plus and N-Rickert presented antimicrobial activity against C. albicans, S. aureus, and E. coli; no antimicrobial activity in MTA, Sealapex and portland cement was observed. N-Rickert presented the largest inhibition zones varying from 8 to 18 mm, and the microorganism E. faecalis was resistant against all sealers tested.


Author(s):  
H. Tkachenko ◽  
L. Buyun ◽  
Z. Osadovskyy ◽  
M. Truhan ◽  
Ye. Sosnowski ◽  
...  

In the current investigation, screening of ethanolic extract obtained from Ficus lyrata leaves against pathogenic bacteria has been done in order to assess the antimicrobial activity aimed at detecting new sources of antimicrobial agents. The antimicrobial activity of the extract was determined using agar disc diffusion method. The antibacterial activity of leaf extract of F. lyrata was tested against human pathogenic bacteria — both Gram-positive (Staphylococcus aureus, methicillin-resistant S. aureus and Streptococcus pneumoniae) and Gram-negative strains (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli). The results of this study provide evidence that the ethanolic extract of F. lyrata leaves has a mild antimicrobial activities, apparently, attributed to the presence of various secondary metabolites, which confirm the traditional use of this plant for the treatment of diseases caused by pathogens. These data allow us to suggest that the extracts of F. lyrata can be used to discover antibacterial substances for developing new pharmaceuticals to control clinically important pathogens responsible for severe disorders.


Author(s):  
V. V. Pantyo ◽  
M. M. Fizer ◽  
O. I. Fizer ◽  
G. M. Koval ◽  
E.M. Danko

Annotation. The development and rapid pace of the spread of resistance to antimicrobial agents predetermines the search for new methods of counteracting pathogenic and conditionally pathogenic microorganisms. In this context, studies of the antimicrobial activity of newly synthesized chemicals, which in the future can be considered as candidates for antiseptic and disinfectants, are relevant. The aim of the work was to determine the antimicrobial activity of new ionic associates based on the surface-active cetylpyridinium cation with respect to certain opportunistic microorganisms. The antimicrobial activity of four ionic associates based on the cetylpyridinium cation with respect to clinical isolates of E. coli, P. vulgaris, K. pneumonia, P. aeruginosa, S. aureus, as well as the collection test strains of S. aureus ATCC 25923, E. coli ATCC 29522 and P. aeruginosa ATCC 27853 was studied. Screening studies were performed by the disk diffusion method. With substances that showed an antimicrobial effect, quantitative studies were carried out by the method of serial macro-dilutions in a liquid nutrient media. Screening studies revealed the antibacterial activity of the substances against E. coli ATCC 25923, E. coli (clinical isolate), P. vulgaris and K. pneumonia. With these microorganisms quantitative studies were carried out with the determination of the minimum inhibitory and minimum bactericidal concentrations. The most pronounced antimicrobial activity for the investigated microflora was shown by tetraphenylborate and cetylpyridinium perchlorate. The MIC and MBC values of these substances ranged between 1.625–3.125 mmol / L and 3.125–12.5 mmol / L, respectively. The studied associates showed high antimicrobial activity against representatives of the Enterobacteriaceae family in in vitro studies. Promising is the further study of the effect of the counter-anion associates of cationic surfactants on the biofilm formation of conditionally pathogenic microorganisms.


Author(s):  
Amresh Kumar Yadav ◽  
Sanjeev Kumar Ambasta ◽  
Surendra Kumar Prasad ◽  
M. P. Trivedi

Objective: To evaluate the antibacterial property of crude, aqueous and organic solvent extract from leaf, stem and root parts of two different var. of Catharanthus roseus (i.e. “rosea” and “alba”) under in vitro conditions on various human pathogenic bacteria.Methods: Antibacterial activity of crude (fresh), aqueous, ethanolic, methanolic and equimolar (1:1) mixture of ethanolic dried leaf extract of variety “rosea” and “alba” was evaluated against various pathogenic bacteria viz. Bacillus subtilis, Escherichia coli and Staphylococcus aureus by disk diffusion method under in vitro conditions.Results: Gram-positive bacteria were found to be more susceptible than Gram-negative. Dried extracts of root, stem and leaf of C. roseus var. “rosea” and “alba” plants showed maximum antibacterial potency against all the test microorganisms. The equimolar mixture of ethanolic dried leaf extracts of species “rosea” and “alba” exhibited the maximum zone of inhibition against B. subtilis, E. coli and S. aureus as compare to extract prepared from individual parts. The findings of the ethanolic mixture of dried leaves of the two varieties on the tested bactera confirm that the effect is potentiating which may be synergistic or additive.Conclusion: From the findings, it could be inferred that C. roseus var. “rosea” and “alba” could be efficiently used in the development of new life-saving drugs against bacterial pathogens. 


Author(s):  
Liz Hannah George ◽  
Aswin Arakkal ◽  
Prathapan Sreedharan ◽  
G. S. Sailaja

Abstract An injectable osteoconductive polyelectrolyte complex –hydroxyapatite formulation capable of controlled delivery of ciprofloxacin has been developed from a novel biodegradable polyelectrolyte complex and antibiotic loaded nascent hydroxyapatite (n-HAP) for the treatment of osteomyelitis. A single source (chitosan) derived polyelectrolytes were complexed in situ in the presence of n-HAP, pre-loaded with ciprofloxacin. The PEC- (n-HAP) nanoformulation (HPEC) was characterized by FT-IR, XRD, TGA and TEM analyses. HPEC combines functionalities of n-HAP (crystallinity and osteoconductivity) as well as PEC (biodegradable hydrophilic electrostatically bound macromolecular network) imparting better control over swelling and degradation kinetics favourable for drug release and transport of micronutrients. MTT assay and cytoskeleton staining (MG 63 cells) established cytocompatibility of HPEC. Early biomimetic mineralization of apatite was manifested under simulated physiological condition with a Ca/P of 1.23 (day 3) and 1.55 (day 6) complimented by in vitro biomineralization of MG-63 and Human Osteosarcoma (HOS) cells in a week (Alizarin Red S staining), which was further validated by calcium quantification. Antibacterial efficacy of HPEC has been evaluated by delivery kinetics of ciprofloxacin and by disc diffusion method against S. aureus and E. coli. The injectable system therefore possesses unique combination of functionalities: osteoconduction enriched with early biomineralization, antibacterial activity and is biodegradable; hence highly suitable for osteomyelitis treatment.


Sign in / Sign up

Export Citation Format

Share Document