scholarly journals Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions

Author(s):  
Ryley D. McClelland ◽  
Tyce N. Culp ◽  
David J. Marchant

Viruses are diverse pathogens that use host factors to enter cells and cause disease. Imaging the entry and replication phases of viruses and their interactions with host factors is key to fully understanding viral infections. This review will discuss how confocal microscopy and imaging flow cytometry are used to investigate virus entry and replication mechanisms in fixed and live cells. Quantification of viral images and the use of cryo-electron microscopy to gather structural information of viruses is also explored. Using imaging to understand how viruses replicate and interact with host factors, we gain insight into cellular processes and identify novel targets to develop antiviral therapeutics and vaccines.

Cell Reports ◽  
2021 ◽  
Vol 34 (10) ◽  
pp. 108824
Author(s):  
Gregor Holzner ◽  
Bogdan Mateescu ◽  
Daniel van Leeuwen ◽  
Gea Cereghetti ◽  
Reinhard Dechant ◽  
...  

2019 ◽  
Author(s):  
Lucien E. Weiss ◽  
Yael Shalev Ezra ◽  
Sarah E. Goldberg ◽  
Boris Ferdman ◽  
Yoav Shechtman

ABSTRACTImaging flow cytometry replaces the canonical point-source detector of flow cytometry with a camera, unveiling subsample details in 2D images while maintaining high-throughput. Here we show that the technique is inherently compatible with 3D localization microscopy by point-spread-function engineering, namely the encoding of emitter depth in the emission pattern captured by a camera. By exploiting the laminar-flow profile in microfluidics, 3D positions can be extracted from cells or other objects of interest by calibrating the depth-dependent response of the imaging system using fluorescent microspheres mixed with the sample buffer. We demonstrate this approach for measuring fluorescently-labeled DNA in vitro and the chromosomal compaction state in large populations of live cells, collecting thousands of samples each minute. Furthermore, our approach is fully compatible with existing commercial apparatus, and can extend the imaging volume of the device, enabling faster flowrates thereby increasing throughput.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2431
Author(s):  
Pierre-Yves Lozach

Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yersultan Mirasbekov ◽  
Adina Zhumakhanova ◽  
Almira Zhantuyakova ◽  
Kuanysh Sarkytbayev ◽  
Dmitry V. Malashenkov ◽  
...  

AbstractA machine learning approach was employed to detect and quantify Microcystis colonial morphospecies using FlowCAM-based imaging flow cytometry. The system was trained and tested using samples from a long-term mesocosm experiment (LMWE, Central Jutland, Denmark). The statistical validation of the classification approaches was performed using Hellinger distances, Bray–Curtis dissimilarity, and Kullback–Leibler divergence. The semi-automatic classification based on well-balanced training sets from Microcystis seasonal bloom provided a high level of intergeneric accuracy (96–100%) but relatively low intrageneric accuracy (67–78%). Our results provide a proof-of-concept of how machine learning approaches can be applied to analyze the colonial microalgae. This approach allowed to evaluate Microcystis seasonal bloom in individual mesocosms with high level of temporal and spatial resolution. The observation that some Microcystis morphotypes completely disappeared and re-appeared along the mesocosm experiment timeline supports the hypothesis of the main transition pathways of colonial Microcystis morphoforms. We demonstrated that significant changes in the training sets with colonial images required for accurate classification of Microcystis spp. from time points differed by only two weeks due to Microcystis high phenotypic heterogeneity during the bloom. We conclude that automatic methods not only allow a performance level of human taxonomist, and thus be a valuable time-saving tool in the routine-like identification of colonial phytoplankton taxa, but also can be applied to increase temporal and spatial resolution of the study.


2021 ◽  
Vol 22 (2) ◽  
pp. 677
Author(s):  
Tausif Altamash ◽  
Wesam Ahmed ◽  
Saad Rasool ◽  
Kabir H. Biswas

Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 124
Author(s):  
Jaco Botha ◽  
Haley R. Pugsley ◽  
Aase Handberg

Flow cytometry remains a commonly used methodology due to its ability to characterise multiple parameters on single particles in a high-throughput manner. In order to address limitations with lacking sensitivity of conventional flow cytometry to characterise extracellular vesicles (EVs), novel, highly sensitive platforms, such as high-resolution and imaging flow cytometers, have been developed. We provided comparative benchmarks of a conventional FACS Aria III, a high-resolution Apogee A60 Micro-PLUS and the ImageStream X Mk II imaging flow cytometry platform. Nanospheres were used to systematically characterise the abilities of each platform to detect and quantify populations with different sizes, refractive indices and fluorescence properties, and the repeatability in concentration determinations was reported for each population. We evaluated the ability of the three platforms to detect different EV phenotypes in blood plasma and the intra-day, inter-day and global variabilities in determining EV concentrations. By applying this or similar methodology to characterise methods, researchers would be able to make informed decisions on choice of platforms and thereby be able to match suitable flow cytometry platforms with projects based on the needs of each individual project. This would greatly contribute to improving the robustness and reproducibility of EV studies.


Sign in / Sign up

Export Citation Format

Share Document