scholarly journals Non-invasive Systemic Hemodynamic Index in Vascular Risk Stratification Tailored for Hypertensives

2021 ◽  
Vol 8 ◽  
Author(s):  
Jianning Zhang ◽  
Jiawen Liang ◽  
Xiaoyu Zhang ◽  
Chen Su ◽  
Jiang He ◽  
...  

Vascular dysfunction is a key hallmark of hypertension and related cardiovascular outcomes. As a well-known hemodynamic disease, hypertension is characterized by abnormal ventricular-vascular interactions. Complementing non-invasive systemic hemodynamics in hypertensive vascular risk assessment is of promising significance. We aimed to investigate the effects of abnormal hemodynamic states other than elevated blood pressure on vascular damage and establish a united index of systemic hemodynamics for generalized vascular risk evaluation. Non-invasive systemic hemodynamics, assessed by impedance cardiography, was compared among blood pressure stages. Vascular function was evaluated by flow-mediated dilation (FMD) and brachial-ankle pulse wave velocity (baPWV). Systemic hemodynamics was obtained from a total of 88 enrollees with a mean (±SD) systolic blood pressure 140 (±17) mm Hg, and aged 17 to 91 years. Both stroke systemic vascular resistance index and left stroke work index exhibited a significant alteration among blood pressure stages (p < 0.001; p = 0.01, respectively), whereas heterogeneous hemodynamic and vascular function subsets existed within similar blood pressure. In addition, blood pressure categories failed to recognize between-group differences in endothelial dysfunction (p = 0.88) and arterial stiffness (p = 0.26). An increase in myocardial contractility and a parallel decrease in afterload was associated with the decline of vascular dysfunction. Systemic Hemodynamic Index (SHI), as a surrogate marker, demonstrated a significantly negative correlation with vascular damage index (VDI, r = −0.49, p < 0.001). These findings illustrate that systemic hemodynamics underlying hypertensives provides more vascular information. The SHI/VDI score may be a feasible tool for cardiovascular function assessment.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Huey Wen Lee ◽  
Melita Brdar ◽  
Robert Widdop ◽  
Anthony Dear ◽  
Tracey Gaspari

Glucagon-like peptide-1 (GLP-1) based therapies are used to treat type II diabetes via increasing insulin secretion and inhibiting glucagon production. Recent evidence suggests that activating the GLP-1 receptor may also mediate direct vaso-protective effects. Therefore the objective of the study was to determine whether GLP-1R stimulation conferred cardio- and vaso-protection in a non-diabetic setting using the angiotensin (Ang) II infusion model of hypertension and cardiovascular dysfunction. Male C57Bl/6J mice (4-6 months) were assigned to one of the following 4 week treatment protocols: 1) vehicle (saline), 2) Ang II (800ng/kg/day), 3) Ang II + liraglutide (30μg/kg/day), 4) Ang II + liraglutide (300μg/kg/day). All treatments were administered via osmotic mini-pumps (s.c). After 4 weeks the effect of liraglutide treatment on blood pressure, vascular function and cardiac remodelling was examined. Liraglutide (both doses) attenuated Ang II-induced increase in systolic blood pressure (Ang II: 175.3 ± 8.6mmHg vs Ang II+Lirag (30) 150.2 ± 6.4 mmHg or Ang II+Lirag (300): 145.4 ± 6.9 mmHg) without affecting blood glucose levels. Liraglutide (both doses) completely prevented Ang II-induced endothelial dysfunction (% maximum relaxation: Ang II=50.7 ± 7.8%; Ang II+Lirag (30)=82.7 ± 5.8; Ang II+Lirag (300)=81.5 ± 6.1%). In the heart, liraglutide prevented Ang II-induced cardiomyocyte hypertrophy (n=7-10; p<0.05) and reduced collagen deposition (% collagen expression: Ang II=4.4 ± 0.5 vs Ang II+Lirag(300)=2.9 ± 0.3; n=7-9; p<0.01). This anti-fibrotic effect was attributed to reduced fibroblast/myofibroblast expression as well as decreased inflammation with reduced NFκB and MCP-1 expression and decreased oxidative stress with a significant reduction in superoxide production using high dose of liraglutide. Overall, stimulation of GLP-1R in a non-diabetic setting protected against Ang II-mediated cardiac hypertrophy, cardiac fibrosis and vascular dysfunction, indicating potential for use of GLP-1 based therapies in treatment of cardiovascular disease independent of diabetes.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sarah Johnson ◽  
Nicole Litwin ◽  
Hannah Van Ark ◽  
Shannon Hartley ◽  
Emily Fischer ◽  
...  

Abstract Objectives The gut microbiota is emerging as an important regulator of cardiovascular health. Indeed, gut dysbiosis is increasingly being linked to the development of cardiovascular disease (CVD). Aging and obesity are associated with the development of CVD largely due to the development of vascular dysfunction, namely endothelial dysfunction and arterial stiffness. The objective of this study was to examine the relationship between the gut microbiota, blood pressure, and vascular function in aging overweight and obese individuals. Methods This cross-sectional study included fifteen overweight and obese (mean body mass index, BMI: 29.5; range: 25.8–37.0) middle-aged/older men and postmenopausal women (mean age: 53; range: 42–64 years). Blood pressure, arterial stiffness (augmentation index, AIx, and aortic pulse wave velocity, aPWV), and endothelial function (reactive hyperemia index, RHI) were assessed. Stool samples were collected for gut microbiota analysis using 16S ribosomal RNA sequencing. Principal coordinates analysis and Pearson's correlations were performed to evaluate the relationship between the gut microbiota and measures of vascular function and blood pressure. Results Global gut microbiota phenotypes clustered most strongly by aPWV (groups separated by median value) as visualized by Non-Metric Dimensional Scaling plot of Bray-Curtis Distances (stress = 0.09; P = 0.07). Several bacterial taxa correlated with vascular parameters. For example, Bifidobacterium longum (r = 0.80, P < 0.001) and Akkermansia muciniphila (r = 0.56, P = 0.047) were positively correlated with RHI. Bifdobacterium bifidum (r = −0.61, P = 0.02) and Oxalobacter formigenes (r = −0.62, P = 0.02) were negatively correlated with systolic blood pressure. Interestingly, there was no significant clustering by BMI groupings (overweight vs. obese) or correlations between BMI and specific taxa. Conclusions These preliminary data suggest that the gut microbiota is linked to vascular dysfunction and increased blood pressure in aging overweight and obese individuals independent of BMI. Further data collection and analysis are currently underway to explore these relationships in a larger human cohort, and to explore underlying mechanisms through transferring of vascular phenotypes in humans to germ-free mice through microbiota transplantation. Funding Sources NIFA, USDA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lale A. Ertuglu ◽  
Fernando Elijovich ◽  
Cheryl L. Laffer ◽  
Annet Kirabo

Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.


2017 ◽  
Vol 234 (1) ◽  
pp. T67-T82 ◽  
Author(s):  
Jennifer J DuPont ◽  
Iris Z Jaffe

Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.


2019 ◽  
Author(s):  
Mateus R. Amorim ◽  
Júnia L. de Deus ◽  
Camila A. Pereira ◽  
Luiz E. V. da Silva ◽  
Gabriela S. Borges ◽  
...  

ABSTRACTBeyond the regulation of cardiovascular function, baroreceptor afferents play polymodal roles. We hypothesized that baroreceptor denervation affects lipopolysaccharide (LPS)-induced systemic inflammation (SI) and hemodynamic collapse in conscious rats, and that these parameters are interconnected. We combine: a) hemodynamic and thermoregulatory recordings after LPS administration at a septic-like dose b) analysis of the cardiovascular complexity, c) evaluation of vascular function in mesenteric resistance vessels, and d) measurements of inflammatory cytokines (plasma and spleen). LPS-induced drop in blood pressure was higher in sino-aortic denervated (SAD) rats. LPS-induced hemodynamic collapse was associated with SAD-dependent autonomic disbalance. LPS-induced vascular dysfunction was not affected by SAD. Surprisingly, SAD blunted LPS-induced surges of plasma and spleen cytokines. These data indicate that sino-aortic afferents are key to alleviate LPS-induced cardiovascular collapse, affecting the autonomic cardiovascular control, without affecting resistance blood vessels. Moreover, baroreflex modulation of the LPS-induced SI and hemodynamic collapse seem not to be interconnected.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Augusto C Montezano ◽  
Adam P Harvey ◽  
Francisco J Rios ◽  
Maria Dulak-Lis ◽  
Wendy Beatie ◽  
...  

Nox5 is a unique Ca 2+ -sensitive Nox isoform that is expressed in human vascular smooth muscle cells (VSMC). Although Nox5 has been implicated in diabetic nephropathy, its role in vascular function and development of hypertension remain unclear. Nox5 is not expressed in rodents, and accordingly we generated humanised Nox5 mice with Nox5 expressed in a VSMC-specific manner (Nox5SM22). Control (wild-type) and Nox5SM22 mice were infused with Ang II (600 ng/Kg/day). Blood pressure (BP) was assessed by tail-cuff. Vascular function and structure of resistance arteries were measured by myography. Ang II increased BP in WT (182.5±10 mmHg) and Nox5SM22 mice (173.1±5 mmHg) with no significant differences. Arteries from Nox5SM22 mice exhibited reduced endothelium-dependent relaxation versus WT controls (%ACh relaxation: 55.1±4 vs ctl: 81.6±7%). Fasudil (Rho kinase inhibitor)-induced relaxation was reduced in Nox5SM22 mice versus controls (%Fas: 111.3±11 vs ctl: 166.6±8%) (p<0.05). Ang II increased the maximal contraction to U46619 (thromboxane A2 mimetic) in WT (115.8±2 vs untreated: 101.4±2%) and Nox5SM22 (121.3±3 vs untreated: 99.1±2) (p<0.05) and induced endothelial dysfunction in all groups. Fasudil-induced relaxation was impaired by Ang II in WT (102.7±6 vs untreated: 166.6±8%, p<0.05) but not further impaired in Nox5SM22 mice (114.9±6 vs untreated: 111.3±11%). Ang II increased cross-sectional area (CSA) and lumen diameter; while in Nox5SM22 mice, Ang II increased wall thickness, wall-to-lumen ratio, CSA and decreased lumen diameter, with associated increased vascular stiffness. Our findings indicate that in mice expressing human Nox5 in VSMCs, endothelium-dependent relaxation is impaired, fasudil-mediated vasodilation is attenuated and vessels undergo exaggerated hypertrophic inward remodelling with increased stiffness; processes that occur independently of BP elevation. These data suggest an important role for Nox5 in Ang II-induced vascular dysfunction and remodeling, but not in the development of hypertension. Moreover, we identify Rho kinase as a putative target for Nox5-induced vascular injury. We provide novel insights into Nox5 vascular biology and demonstrate that vascular Nox5 actions are dissociated from BP effects.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Derrian Wright ◽  
Simone Kennard ◽  
Galina Antonova ◽  
Iris Z Jaffe ◽  
...  

Placental ischemia, an initiating event of preeclampsia (PE), increases plasma leptin levels. We recently developed a model of midgestation (gestation day (GD)11-18) leptin infusion mimicking the midgestation rise in leptin levels of PE patients. Our previous work demonstrates that deletion of endothelial mineralocorticoid receptors (ECMR) improves markers of vascular dysfunction in leptin-infused female mice. We hypothesized vascular function improvement with ECMR deletion ablates hypertension and fetal growth restriction in pregnant leptin-infused mice. Pregnant ECMR +/+ (WT) and ECMR -/- (KO) mice were infused with vehicle or leptin by osmotic pump (lep, 0.9mg/kg/day, s.c.) on GD11-18 while implanted with radiotelemeters for conscious blood pressure (BP) measurement and wire myography of thoracic aorta and 2 nd order mesenteric arteries at GD18 (*=P<0.05). Leptin infusion did not decrease maternal weight in any groups. Leptin decreased pup weight (0.86±0.04g WT vs 0.52±0.11 WT+lep*) and placental efficiency (pup/placenta ratio) (9.7±0.7 WT vs 7.9±0.6 WT+lep*) in WT pregnant mice. ECMR deletion prevented leptin-mediated decreases in pup weight (0.91±0.06g KO vs 1.0±0.07 KO+lep) and placental efficiency (9.6±0.5 KO vs 9.4±1.2 KO+lep). Mean arterial pressure (BP) increased in leptin-infused WT (102±3mmHg WT vs 120±12 WT+lep*), but not KO (107±2 KO vs 106±8 KO+lep), mice from GD11-18. Leptin infusion reduced acetylcholine-mediated relaxation in both aorta and mesenteric arteries of WT* and constriction to KCl in mesenteric arteries in WT*, but not KO, pregnant mice (2-way ANOVA, repeated measures). Leptin increased plasma endothelin-1 (ET-1, 1.1±0.3 pg/ml WT vs 4.4±1.8 WT+lep*), placental mRNA expression of prepro-ET-1 (1.9±0.3-fold change from WT*) and ET-1 converting enzyme-1 (1.6±0.3-fold change from WT*) in pregnant WT mice. Leptin infusion also increased adrenal aldosterone-synthase protein (1.4±0.4 WT ratio/β actin vs 3.2±0.3 WT+lep*) and angiotensin II type 1 receptor b (3.5±0.8-fold change from WT*) mRNA in pregnant mice. Collectively, these data indicate that leptin infusion induces hypertension and fetal growth restriction in pregnant mice due to vascular dysfunction and increased ECMR activation in pregnant mice.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Victor Garcia ◽  
Ankit Gilani ◽  
Brian Shkolnik ◽  
John R Falck ◽  
Varun Pandey ◽  
...  

Here, we report that GPR75, a G protein-coupled receptor of the Gq rhodopsin subfamily, selectively binds 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450-derived bioactive arachidonic acid metabolite implicated in the pathogenesis of hypertension and cardiovascular diseases. In endothelial cells, 20-HETE binding to GPR75 stimulates β-arrestin recruitment and GIT1-GPR75 association, which further facilitates a c-Src-mediated transactivation of EGFR. This results in downstream signaling pathways which induce ACE expression and decrease NO bioavailability. Knockdown of GPR75 prevents 20-HETE-mediated downstream effects in endothelial cells including EGFR activation and ACE induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gα q/11 -and GIT1-mediated PKC-stimulated phosphorylation of MaxiKβ, linking GPR75 activation to 20-HETE-mediated vasoconstriction. We used the conditional Cyp4a12tg mice, which display doxycycline (DOX)-mediated hypertension along with vascular dysfunction and remodeling in a 20-HETE-dependent manner, to assess whether GPR75 is a necessary component of 20-HETE pro-hypertensive actions. Administration of GPR75-targeted shRNA lentiviral particles to DOX-treated Cyp4a12tg mice, which resulted in 80% knockdown of GPR75 knockdown, prevented blood pressure elevation (100±3 vs 135±2 mmHg) and 20-HETE-mediated increases in ACE expression, endothelial dysfunction, smooth muscle contractility and vascular remodeling when compared to DOX-treated Cyp4a12tg mice receiving non-targeted shRNA. The discovery of 20-HETE-GPR75 pairing provides the molecular basis for the signaling and pathophysiological bioactions mediated by 20-HETE in hypertension. These results clearly place GPR75 as a novel target in the control of blood pressure and vascular function.


2019 ◽  
Vol 127 (4) ◽  
pp. 1085-1094 ◽  
Author(s):  
Ryan M. Broxterman ◽  
D. Taylor La Salle ◽  
Jia Zhao ◽  
Van R. Reese ◽  
Russell S. Richardson ◽  
...  

Dietary inorganic nitrate (nitrate) is a promising adjunctive treatment to reduce blood pressure and improve vascular function in hypertension. However, it remains unknown if the efficacy of nitrate is dependent upon an elevated blood pressure or altered by medication in patients with hypertension. Therefore, blood pressure and vascular function, measured by passive leg movement (PLM) and flow-mediated dilation (FMD), were assessed following 3 days of placebo (nitrate-free beetroot juice) and nitrate (nitrate-rich beetroot juice) administration in 13 patients (age: 53 ± 12 yr) with hypertension taking antihypertensive medications ( study 1) and in 14 patients (49 ± 13 yr) with hypertension not taking antihypertensive medications ( study 2). In study 1, plasma nitrite concentration was greater for nitrate than placebo (341 ± 118 vs. 308 ± 123 nmol/L, P < 0.05), yet blood pressure and vascular function were unaltered. In study 2, plasma nitrite concentration was greater for nitrate than placebo (340 ± 102 vs. 295 ± 93 nmol/L, P < 0.01). Systolic (136 ± 16 vs. 141 ± 19 mmHg), diastolic (84 ± 13 vs. 88 ± 12 mmHg), and mean (101 ± 12 vs. 106 ± 13 mmHg) blood pressures were lower ( P < 0.05), whereas the PLM change in leg vascular conductance (6.0 ± 3.0 vs. 5.1 ± 2.6 mL·min−1·mmHg−1) and FMD (6.1 ± 2.4% vs. 4.1 ± 2.7%) were greater ( P < 0.05) for nitrate than placebo. The changes in systolic blood pressure ( r = −0.60) and FMD ( r = −0.48) induced by nitrate were inversely correlated ( P < 0.05) to the respective baseline values obtained in the placebo condition. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive medication status, per se. NEW & NOTEWORTHY Dietary nitrate (nitrate) is a promising intervention to improve blood pressure and vascular function in hypertension. We demonstrate that these beneficial effects of nitrate are inversely related to the baseline value in a continuous manner with no distinction between antihypertensive medication status. Thus, the efficacy of nitrate to improve blood pressure and vascular function in hypertension appears to be dependent on the degree of blood pressure elevation and vascular dysfunction and not antihypertensive mediation status.


Sign in / Sign up

Export Citation Format

Share Document