scholarly journals Comparative Assessment and Future Prediction Using CMIP6 and CMIP5 for Annual Precipitation and Extreme Precipitation Simulation

2021 ◽  
Vol 9 ◽  
Author(s):  
Jingjing Li ◽  
Ran Huo ◽  
Hua Chen ◽  
Ying Zhao ◽  
Tianhui Zhao

This study assesses the improvement of the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) over Coupled Model Intercomparison Project Phase 5 (CMIP5) for precipitation simulation. Precipitation simulations under different future climate scenarios are also compared in this work. The results show that: 1) CMIP6 has no overall advantage over CMIP5 in simulating total precipitation (PRCPTOT) and maximum consecutive dry days (CDD). The performance of CMIP6 increases or decreases regionally in PRCPTOT and consecutive dry days. But it is slightly worse than CMIP5 in simulating very wet days (R95pTOT). 2) Comparing the trend test results of CMIP5 and CMIP6 in the future, there are more areas with significant trend based on Mann–Kendall test in CMIP6 compared with that of CMIP5. The differences in PRCPTOT are mainly found in Amazon Basin and Western Africa. The differences between the R95pTOT trends mainly noticeable in South America and Western Africa, and the differences in CDD are mainly reflected in Central Asia, Sahara Desert and central South America. 3) In Southern South America and Western North America, the PRCPTOT changing rate of CMIP6 in the future under various scenarios is always greater than that of CMIP5; in Alaska, Western Africa, Southern Africa, the PRCPTOT changing rate of CMIP6 in the future under various scenarios is always less than that of CMIP5. In Southern South America, the R95pTOT changing rate of CMIP6 in the future under various scenarios is always greater than that of CMIP5; in Alaska, East Asia, North Asia, the R95pTOT changing rate of CMIP6 in the future under various scenarios is always less than that of CMIP5. In almost half of the regions, the CDD changing rate of CMIP6 is less than that of CMIP5 under all scenarios, namely Australia, Amazon Basin, Southern South America, Central America, Western North America, Central North America, Eastern North America, Central Asia, Tibet.

2012 ◽  
Vol 16 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
S. L. Sun ◽  
H. S. Chen ◽  
W. M. Ju ◽  
J. Song ◽  
J. J. Li ◽  
...  

Abstract. To understand the causes of the past water cycle variations and the influence of climate variability on the streamflow, lake storage, and flood potential, we analyze the changes in streamflow and the underlying drivers in four typical watersheds (Gaosha, Meigang, Saitang, and Xiashan) within the Poyang Lake Basin, based on the meteorological observations at 79 weather stations, and datasets of streamflow and river level at four hydrological stations for the period of 1961-2000. The contribution of different climate factors to the change in streamflow in each watershed is estimated quantitatively using the water balance equations. Results show that in each watershed, the annual streamflow exhibits an increasing trend from 1961–2000. The increases in streamflow by 4.80 m3 s−1 yr−1 and 1.29 m3 s−1 yr−1 at Meigang and Gaosha, respectively, are statistically significant at the 5% level. The increase in precipitation is the biggest contributor to the streamflow increment in Meigang (3.79 m3 s−1 yr−1), Gaosha (1.12 m3 s−1 yr−1), and Xiashan (1.34 m3 s−1 yr−1), while the decrease in evapotranspiration is the major factor controlling the streamflow increment in Saitang (0.19 m3 s−1 yr−1). In addition, radiation and wind contribute more than actual vapor pressure and mean temperature to the changes in evapotranspiration and streamflow for the four watersheds. For revealing the possible change of streamflow due to the future climate change, we also investigate the projected precipitation and evapotranspiration from of the Coupled Model Intercomparison Project phase 3 (CMIP3) under three greenhouse gases emission scenarios (SRESA1B, SRESA2 and SRESB1) for the period of 2061–2100. When the future changes in the soil water storage changes are assumed ignorable, the streamflow shows an uptrend with the projected increases in both precipitation and evapotranspiration (except for the SRESB1 scenario in Xiashan watershed) relative to the observed mean during 1961–2000. Furthermore, the largest increase in the streamflow is found at Meigang (+4.31%) and Xiashan (+3.84%) under the SRESA1B scenario, while the increases will occur at Saitang (+6.87%) and Gaosha (+5.15%) under the SRESB1 scenario.


2019 ◽  
Vol 6 (1) ◽  
pp. 17-21
Author(s):  
Wahid Hussain ◽  
Lal Badshah ◽  
Sayed Afzal Shah ◽  
Farrukh Hussain ◽  
Asghar Ali ◽  
...  

Salvia reflexa Hornem., a member of the New World subgenus Calosphace, ranges from North America to southern South America, Australia, New Zealand, South Africa and Afghanistan in Asia, and still continues to expand its range. Here we report further range expansion for S. reflexa into the tribal areas of Pakistan and hypothesize that it has been introduced from Afghanistan. This represents a new record for the flora of Pakistan.


2014 ◽  
Vol 88 (3) ◽  
pp. 434-443 ◽  
Author(s):  
Donald R. Prothero ◽  
Kenneth E. Campbell ◽  
Brian L. Beatty ◽  
Carl D. Frailey

A new dromomerycine palaeomerycid artiodactyl, Surameryx acrensis new genus new species, from upper Miocene deposits of the Amazon Basin documents the first and only known occurrence of this Northern Hemisphere group in South America. Osteological characters place the new taxon among the earliest known dromomerycine artiodactyls, most similar to Barbouromeryx trigonocorneus, which lived in North America during the early to middle Miocene, 20–16 Ma. Although it has long been assumed that the Great American Biotic Interchange (GABI) began with the closure of the Isthmus of Panama in the late Pliocene, or ca. 3.0–2.5 Ma, the presence of this North American immigrant in Amazonia is further evidence that terrestrial connections between North America and South America through Panama existed as early as the early late Miocene, or ca. 9.5 Ma. This early interchange date was previously indicated by approximately coeval specimens of proboscideans, peccaries, and tapirs in South America and ground sloths in North America. Although palaeomerycids apparently never flourished in South America, proboscideans thrived there until the end of the Pleistocene, and peccaries and tapirs diversified and still live there today.


2021 ◽  
Vol 15 (2) ◽  
pp. 1015-1030 ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas

Abstract. Polar amplification will result in amplified temperature changes in the Arctic with respect to the rest of the globe, making the Greenland ice sheet particularly vulnerable to global warming. While the ice sheet has been showing an increased mass loss in the past decades, its contribution to global sea level rise in the future is of primary importance since it is at present the largest single-source contribution after the thermosteric contribution. The question of the fate of the Greenland and Antarctic ice sheets for the next century has recently gathered various ice sheet models in a common framework within the Ice Sheet Model Intercomparison Project for the Coupled Model Intercomparison Project – phase 6 (ISMIP6). While in a companion paper we present the GRISLI-LSCE (Grenoble Ice Sheet and Land Ice model of the Laboratoire des Sciences du Climat et de l'Environnement) contribution to ISMIP6-Antarctica, we present here the GRISLI-LSCE contribution to ISMIP6-Greenland. We show an important spread in the simulated Greenland ice loss in the future depending on the climate forcing used. The contribution of the ice sheet to global sea level rise in 2100 can thus be from as low as 20 mm sea level equivalent (SLE) to as high as 160 mm SLE. Amongst the models tested in ISMIP6, the Coupled Model Intercomparison Project – phase 6 (CMIP6) models produce larger ice sheet retreat than their CMIP5 counterparts. Low-emission scenarios in the future drastically reduce the ice mass loss. The oceanic forcing contributes to about 10 mm SLE in 2100 in our simulations. In addition, the dynamical contribution to ice thickness change is small compared to the impact of surface mass balance. This suggests that mass loss is mostly driven by atmospheric warming and associated ablation at the ice sheet margin. With additional sensitivity experiments we also show that the spread in mass loss is only weakly affected by the choice of the ice sheet model mechanical parameters.


2013 ◽  
Vol 26 (16) ◽  
pp. 5863-5878 ◽  
Author(s):  
Toby R. Ault ◽  
Julia E. Cole ◽  
Jonathan T. Overpeck ◽  
Gregory T. Pederson ◽  
Scott St. George ◽  
...  

Abstract The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here power spectra and power laws (β) are estimated from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). The significance of the estimates of spectral densities and β are tested against the null hypothesis that they reflect solely the effects of local (nonclimate) sources of autocorrelation at the monthly time scale. Although tree-ring-based hydroclimate reconstructions are generally consistent with this null hypothesis, values of β calculated from long moisture-sensitive chronologies (as opposed to reconstructions) and other types of hydroclimate proxies exceed null expectations. Therefore it may be argued that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal-to-multidecadal time scales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.


Zootaxa ◽  
2018 ◽  
Vol 4387 (2) ◽  
pp. 394
Author(s):  
DAVID J. FERGUSON ◽  
DAVID K. YEATES

The Apioceridae (Diptera) are relatively large asiloid flies with just over 140 described species worldwide. They are closely related to both Mydidae and Asilidae, and most species are found in Australia and North America, however a handful are found in both southern Africa and southern South America. The immature stages of only one species is known, the Australian beach dune inhabiting species Apiocera maritima Hardy. Like most asiloid larvae, apiocerid larvae are assumed to be predators of other soft-bodied invertebrates in the soil. Anatomically the larvae and pupae are similar to those of closely related families. The larvae are elongate, cream-coloured, subcylindrical and with a small, well-sclerotised head capsule. The pupa has a number of robust processes and spines on the head capsule and rows of distinctive bristles on the abdominal tergites. These spines and bristles are used by the pupa to drill upwards out of the soil prior to adult emergence. Here we describe the late instar larva and pupa of the Australian species A. striativentris Paramonov and compare them to the larva and pupa of the previously described species. Apiocerid larvae have distinctive, rounded abdominal segments 2-5 that may be diagnostic for the family. 


Bothalia ◽  
1983 ◽  
Vol 14 (3/4) ◽  
pp. 325-328 ◽  
Author(s):  
P. H. Raven

As modern groups of angiosperms have appeared over a period of more than 80 million years, the relative position of the southern continents has changed. For the First 20 m.y. of this period, opportunities for migration were good between Africa and Europe, and this constituted the main pathway for migration between the northern and southern hemispheres. South America progressively moved away from Africa and towards North America over the past 90 m.y. Southern South America and Australasia shared a rich, warm temperate rainforest flora until about 40 m.y. ago. The development of modern climates during the past 10 m.y. has set up modern patterns of vegetation.


2020 ◽  
Author(s):  
Jonathan Beverley ◽  
Mat Collins ◽  
Hugo Lambert ◽  
Rob Chadwick

<p>El Niño–Southern Oscillation (ENSO) has major impacts on the weather and climate across many regions of the world. Understanding how these teleconnections may change in the future is therefore an important area of research. Here, we use simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to investigate future changes in ENSO teleconnections in the North Pacific/North America sector.</p><p>Precipitation over the equatorial Pacific associated with ENSO is projected to shift eastwards under global warming as a result of greater warming in the east Pacific, which reduces the barrier to convection as the warm pool expands eastwards. As a result, there is medium confidence (IPCC AR5 report) that ENSO teleconnections will shift eastwards in the North Pacific/North America sector. In the CMIP6 models, the present day teleconnection is relatively well simulated, with most models showing an anomalously deep Aleutian low and associated positive temperature anomalies over Alaska and northern North America in El Niño years. In the future warming simulations (we use abrupt-4xCO2, in which CO2 concentrations are immediately quadrupled from the global annual mean 1850 value), in agreement with the IPCC AR5 report, the North America teleconnection and associated circulation change is shifted eastwards in most models. However, it is also significantly weaker, with the result that the positive temperature anomalies in El Niño years over North America are much reduced. This weakening is seen both in models with a projected increase and projected decrease in the amplitude of future El Niño events. The mechanisms related to these projected changes, along with potential implications for future long range predictability over North America, will be discussed.</p>


2018 ◽  
Vol 50 ◽  
pp. 01041
Author(s):  
Igor Sirnik ◽  
Hervé Quénol ◽  
Miguel Ángel Jiménez-Bello ◽  
Juan Manzano ◽  
Renan Le Roux

Vine is highly sensitive to climate changes, particularly temperature changes, which can be reflected in the quality of yield. We obtained meteorological data from weather station Llíria in viticultural site Valencia DO in Spain from the period 1961-2016 and elaborated the future modelling scenario Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 for the period 1985-2100 within the Coupled Model Intercomparison, Project Phase 5 (CMIP5) for daily temperature, precipitation and evapotranspiration. The irrigation requirements (IR) future models for grape varieties Tempranillo and Bobal were elaborated. Temperature and evapotranspiration trends increased during observation period and are estimated to continue rising, according to the future model. Nevertheless, precipitation trend is estimated to decrease according to the model. The future scenarios show increase trend of temperature and evapotranspiration and decrease of precipitation. Total IR for the period 1985 – 2100 is expected to increase during growing season months according to the trendline for 16.6 mm (RCP4.5) and 40.0 mm (RCP8.5) for Tempranillo and 8.2 mm (RCP4.5) and 30.9 mm (RCP8.5) for Bobal grape variety. The outcome of this research is important to understand better the future climatic trends in Valencia DO and provides valuable data to face the future climate changes.


Sign in / Sign up

Export Citation Format

Share Document