scholarly journals Fast High-Resolution S-PTHA Along the Western Mediterranean Sea Coastlines. Application to the Bay of Cannes

2021 ◽  
Vol 9 ◽  
Author(s):  
Viviane Souty ◽  
Audrey Gailler

Probabilistic Tsunami Hazard Assessment (PTHA) is a fundamental framework for producing time-independent forecasts of tsunami hazards at the coast, taking into account local to distant tsunamigenic earthquake sources. If high resolution bathymetry and topography data at the shoreline are available, local tsunami inundation models can be computed to identify the highest risk areas and derive evidence-based evacuation plans to improve community safety. We propose a fast high-resolution Seismic-PTHA approach to estimate the tsunami hazard at a coastal level using the Bay of Cannes as test site. The S-PTHA process is firstly fastened by performing seismic and tsunami hazards separately to allow for quick updates, either from seismic rates by adding new earthquakes, or from tsunami hazard by adding new scenarios of tsunamis. Furthermore, significant tsunamis are selected on the basis of the extrapolation of a tsunami amplitude collected offshore from low-resolution simulations to an a priori amplitude nearshore using Green’s law. This allows a saving in computation time on high-resolution simulations of almost 85%. The S-PTHA performed in the Bay of Cannes exhibits maximum expected tsunami waves that do not exceed 1 m in a 2500-year period, except in some particular places such as the Old Port of Cannes. However, the probability to experience wave heights of 30 cm in this same period exceeds 50% along the main beach of Cannes and these results need to be considered in risk mitigation plans given the high touristic attraction of the area, especially in summer times.

2021 ◽  
Vol 11 (19) ◽  
pp. 9112
Author(s):  
Shengchao Wang ◽  
Liguo Han ◽  
Xiangbo Gong ◽  
Pan Zhang

The traditional hyperbolic Radon transform suffers from the major problem of how to both obtain a high resolution and preserve the amplitude variation with offset (AVO). In the Radon domain, high resolution (sparseness) is a valid criterion. However, if a sparse model is obtained in the Radon domain due to averaging along the offset direction, then it is not possible to preserve the AVO in the inversion data. In addition, hyperbolic Radon transform has a time-variant kernel based on a traditional iterative algorithm, the conjugate gradient (CG), which requires significant computation time. To solve these problems, we propose a Radon transform based on waveform that contains both cycle and amplitude characteristics of seismic waves. The new transform entails creating an upper envelope for the seismic data and computing a preliminary forward Radon transform in the time domain. The forward Radon transform incorporates a priori information by measuring the energy of each slowness (p) trace to obtain the high-resolution result of the Radon domain. For AVO preserving, the proposed method uses polynomials to describe the AVO characteristics in the inverse Radon transform based on the least-squares inversion. Besides amplitude preserving and high resolution, the proposed method avoids using CG and greatly reduces the cost of computing hyperbolic Radon transform in the time domain. In applications to both synthetic and field data, waveform Radon transform (WRT) has a better performance than the conjugate gradient Radon transform (CGRT).


2021 ◽  
Vol 21 (12) ◽  
pp. 3789-3807
Author(s):  
Dimitra M. Salmanidou ◽  
Joakim Beck ◽  
Peter Pazak ◽  
Serge Guillas

Abstract. The potential of a full-margin rupture along the Cascadia subduction zone poses a significant threat over a populous region of North America. Previous probabilistic tsunami hazard assessment studies produced hazard curves based on simulated predictions of tsunami waves, either at low resolution or at high resolution for a local area or under limited ranges of scenarios or at a high computational cost to generate hundreds of scenarios at high resolution. We use the graphics processing unit (GPU)-accelerated tsunami simulator VOLNA-OP2 with a detailed representation of topographic and bathymetric features. We replace the simulator by a Gaussian process emulator at each output location to overcome the large computational burden. The emulators are statistical approximations of the simulator's behaviour. We train the emulators on a set of input–output pairs and use them to generate approximate output values over a six-dimensional scenario parameter space, e.g. uplift/subsidence ratio and maximum uplift, that represent the seabed deformation. We implement an advanced sequential design algorithm for the optimal selection of only 60 simulations. The low cost of emulation provides for additional flexibility in the shape of the deformation, which we illustrate here considering two families – buried rupture and splay-faulting – of 2000 potential scenarios. This approach allows for the first emulation-accelerated computation of probabilistic tsunami hazard in the region of the city of Victoria, British Columbia.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


2015 ◽  
Vol 15 (11) ◽  
pp. 2557-2568 ◽  
Author(s):  
M. Wronna ◽  
R. Omira ◽  
M. A. Baptista

Abstract. In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.


2021 ◽  
Vol 13 (15) ◽  
pp. 2882
Author(s):  
Hao Chen ◽  
Shane R. Cloude ◽  
Joanne C. White

In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<~27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).


2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.


2019 ◽  
Vol 27 (3) ◽  
pp. 317-340 ◽  
Author(s):  
Max Kontak ◽  
Volker Michel

Abstract In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90  of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.


2010 ◽  
Vol 3 (6) ◽  
pp. 1555-1568 ◽  
Author(s):  
B. Mijling ◽  
O. N. E. Tuinder ◽  
R. F. van Oss ◽  
R. J. van der A

Abstract. The Ozone Profile Algorithm (OPERA), developed at KNMI, retrieves the vertical ozone distribution from nadir spectral satellite measurements of back scattered sunlight in the ultraviolet and visible wavelength range. To produce consistent global datasets the algorithm needs to have good global performance, while short computation time facilitates the use of the algorithm in near real time applications. To test the global performance of the algorithm we look at the convergence behaviour as diagnostic tool of the ozone profile retrievals from the GOME instrument (on board ERS-2) for February and October 1998. In this way, we uncover different classes of retrieval problems, related to the South Atlantic Anomaly, low cloud fractions over deserts, desert dust outflow over the ocean, and the intertropical convergence zone. The influence of the first guess and the external input data including the ozone cross-sections and the ozone climatologies on the retrieval performance is also investigated. By using a priori ozone profiles which are selected on the expected total ozone column, retrieval problems due to anomalous ozone distributions (such as in the ozone hole) can be avoided. By applying the algorithm adaptations the convergence statistics improve considerably, not only increasing the number of successful retrievals, but also reducing the average computation time, due to less iteration steps per retrieval. For February 1998, non-convergence was brought down from 10.7% to 2.1%, while the mean number of iteration steps (which dominates the computational time) dropped 26% from 5.11 to 3.79.


Author(s):  
Janaka J. Wijetunge

Purpose This paper aims to describe a multi-scenario assessment of the seismogenic tsunami hazard for Bangladesh from active subduction zones in the Indian Ocean region. Two segments of the Sunda arc, namely, Andaman and Arakan, appear to pose a tsunamigenic seismic threat to Bangladesh. Design/methodology/approach High-resolution numerical simulations of tsunami propagation toward the coast of Bangladesh have been carried out for eight plausible seismic scenarios in Andaman and Arakan subduction zones. The numerical results have been analyzed to obtain the spatial variation of the maximum tsunami amplitudes as well as tsunami arrival times for the entire coastline of Bangladesh. Findings The results suggest that the tsunami heights are amplified on either side of the axis of the submarine canyon which approaches the nearshore sea off Barisal in the seaboard off Sundarban–Barisal–Sandwip. Moreover, the computed tsunami amplitudes are comparatively higher north of the latitude 21.5o in the Teknaf–Chittagong coastline. The calculated arrival times indicate that the tsunami waves reach the western half of the Sundarban–Barisal–Sandwip coastline sooner, while shallow water off the eastern half results in a longer arrival time for that part of the coastline, in the event of an earthquake in the Andaman seismic zone. On the other hand, most parts of the Chittagong–Teknaf coastline would receive tsunami waves almost immediately after an earthquake in the northern segment of the Arakan seismic zone. Originality/value The present assessment includes probabilistic measures of the tsunami hazard by incorporating several probable seismic scenarios corresponding to recurrence intervals ranging from 25 years to over 1,000 years.


2011 ◽  
Vol 11 (11) ◽  
pp. 29807-29843 ◽  
Author(s):  
J.-T. Lin

Abstract. Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx) inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±38%), 0.22 TgN (±46%), and 0.40 TgN (±48%) for the a posteriori anthropogenic, lightning and soil emissions, respectively, each about 24% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are each less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Overall, anthropogenic emissions are found to be the dominant source of NOx over East China with important implications for nitrogen control.


Sign in / Sign up

Export Citation Format

Share Document