scholarly journals qPCR Analysis Reveals Association of Differential Expression of SRR, NFKB1, and PDE4B Genes With Type 2 Diabetes Mellitus

2022 ◽  
Vol 12 ◽  
Author(s):  
Waseem Raza ◽  
Jinlei Guo ◽  
Muhammad Imran Qadir ◽  
Baogang Bai ◽  
Syed Aun Muhammad

BackgroundType 2 diabetes mellitus (T2DM) is a heterogeneous, metabolic, and chronic condition affecting vast numbers of the world’s population. The related variables and T2DM associations have not been fully understood due to their diverse nature. However, functional genomics can facilitate understanding of the disease. This information will be useful in drug design, advanced diagnostic, and prognostic markers.AimTo understand the genetic causes of T2DM, this study was designed to identify the differentially expressed genes (DEGs) of the disease.MethodsWe investigated 20 publicly available disease-specific cDNA datasets from Gene Expression Omnibus (GEO) containing several attributes including gene symbols and clone identifiers, GenBank accession numbers, and phenotypic feature coordinates. We analyzed an integrated system-level framework involving Gene Ontology (GO), protein motifs and co-expression analysis, pathway enrichment, and transcriptional factors to reveal the biological information of genes. A co-expression network was studied to highlight the genes that showed a coordinated expression pattern across a group of samples. The DEGs were validated by quantitative PCR (qPCR) to analyze the expression levels of case and control samples (50 each) using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reference gene.ResultsFrom the list of 50 DEGs, we ranked three T2DM-related genes (p < 0.05): SRR, NFKB1, and PDE4B. The enriched terms revealed a significant functional role in amino acid metabolism, signal transduction, transmembrane and intracellular transport, and other vital biological functions. DMBX1, TAL1, ZFP161, NFIC (66.7%), and NR1H4 (33.3%) are transcriptional factors associated with the regulatory mechanism. We found substantial enrichment of insulin signaling and other T2DM-related pathways, such as valine, leucine and isoleucine biosynthesis, serine and threonine metabolism, adipocytokine signaling pathway, P13K/Akt pathway, and Hedgehog signaling pathway. The expression profiles of these DEGs verified by qPCR showed a substantial level of twofold change (FC) expression (2−ΔΔCT) in the genes SRR (FC ≤ 0.12), NFKB1 (FC ≤ 1.09), and PDE4B (FC ≤ 0.9) compared to controls (FC ≥ 1.6). The downregulated expression of these genes is associated with pathophysiological development and metabolic disorders.ConclusionThis study would help to modulate the therapeutic strategies for T2DM and could speed up drug discovery outcomes.

2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Jiajia Tian ◽  
Yanyan Zhao ◽  
Lingling Wang ◽  
Lin Li

Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling pathway in the heart and liver in a rat model of type 2 diabetes mellitus (T2DM). Our overall goal was to understand the underlying pathophysiological mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as well as downstream cytokines was investigated. Levels of mRNA and protein were assessed using quantitative real-time polymerase chain reaction and western blotting, respectively. Protein content of tissue homogenates was assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher intraperitoneal glucose tolerance than normal rats. In addition, biochemical indicators related to heart and liver function were elevated in diabetic rats compared with normal rats. TLR4 and MyD88 were involved in the occurrence of T2DM as well as T2DM-related heart and liver complications. TLR4 caused T2DM-related heart and liver complications through activation of NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, leading to the heart- and liver-related complications of T2DM.


Author(s):  
Zarish Noreen ◽  
Christopher A. Loffredo ◽  
Attya Bhatti ◽  
Jyothirmai J. Simhadri ◽  
Gail Nunlee-Bland ◽  
...  

The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson’s Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guozhen Yuan ◽  
Shuai Shi ◽  
Qiulei Jia ◽  
Jingjing Shi ◽  
Shuqing Shi ◽  
...  

Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.


2020 ◽  
Author(s):  
Wenhao Song ◽  
Yao Gong ◽  
Pei Tu ◽  
Lin Zhang ◽  
Zhili Jin ◽  
...  

Abstract Background The aim of this study was to analyze the expressions of long noncoding RNA(lncRNA) in rat with type 2 diabetes mellitus(T2DM) complicated with acute myocardial ischemia reperfusion injury(IRI). Methods Type 2 diabetic rats were induced by high calorie diet combined with streptozotocin. IRI rats models were established by the ligation and release of left anterior descending coronary artery(LAD). The expression levels of lncRNA and mRNA in myocardial tissues of rats were detected via high-throughput sequencing technology, and Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed. Result Transcriptome analyses were performed to show expression profiles of mRNAs and lncRNAs in myocardial tissues of diabetic rats with IRI. A total of 2,476 lncRNAs and 710 mRNAs were differentially expressed between operation group and sham operation group. Then, an mRNA-lncRNA coexpression network was constructed. Finally, the present study verified that TCONS_00036439、TCONS_00151548、TCONS_00153276、TCONS_00344188、TCONS_00277692、TCONS_00236469、TCONS_00236468、TCONS_00153290、TCONS_00360941、TCONS_00142622 were associated with the initiation and development of ischemia reperfusion injury. Then, an lncRNA-mRNA coexpression network was constructed. Conclusion There is differential expression of lncRNAs in myocardial IRI tissues of diabetic rats. Building gene regulation networks to find the nodal gene and lncRNA is useful for understanding the pathogenesis of type 2 diabetes mellitus complicated with acute myocardial ischemia reperfusion injury and providing new therapy target.


2013 ◽  
Vol 91 (11) ◽  
pp. 901-912 ◽  
Author(s):  
Raja Latha ◽  
Palanivelu Shanthi ◽  
Panchanadham Sachdanandam

This study aimed at investigating the efficacy of Kalpaamruthaa (KA) on cardiovascular damage (CVD) associated with type 2 diabetes mellitus in experimental rats by reducing oxidative stress and the modulation of the protein kinase C-β (PKC-β)/Akt signaling pathway. CVD-induced rats were treated with KA (200 mg·(kg body mass)–1·(day)–1) orally for 4 weeks. KA effectively reduced insulin resistance with alterations in blood glucose, hemoglobin, and glycosylated hemoglobin in CVD-induced rats. Elevated levels of lipids in CVD-induced rats were decreased upon KA administration. In CVD-induced rats the levels of lipoproteins were returned to normal by KA treatment. KA effectively reduced the lipid peroxidative product and protein carbonyl content in liver of CVD-induced rats. KA increased the activities and (or) levels of enzymatic and nonenzymatic antioxidants in liver of CVD-induced rats. KA treatment reduced the fatty inclusion and mast cell infiltration in liver of CVD-induced rats. Further, treatment with KA reduced the chromatin condensation and marginization in myocardium of CVD-induced rats. KA alters insulin signaling by decreasing PKC-β and increasing p-Akt and GLUT4 expressions in heart of CVD-induced rats. The above findings suggest that KA renders protection against CVD induced by type 2 diabetes mellitus by augmenting the cellular antioxidant defense capacity and modulating PKC-β and the p-Akt signaling pathway.


2017 ◽  
Vol 17 (6) ◽  
Author(s):  
Tomohiro Suhara ◽  
Yuichi Baba ◽  
Briana K. Shimada ◽  
Jason K. Higa ◽  
Takashi Matsui

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Bai ◽  
Wenwen Yang ◽  
Yao Lu ◽  
Wei Wei ◽  
Zongbao Li ◽  
...  

This study is to identify the circular RNA (circRNA) expression profile that is functionally related to pancreatic islet β-cell autophagy and their potential regulation mechanisms in type 2 diabetes mellitus (T2DM). T2DM rat model was constructed by administration of high-fat and high-sugar diet. β-cells were isolated from islets by flow cytometry. CircRNA expression profile in β-cells was detected by circRNA microarrays, and the differentially expressed circRNAs were identified and validated by qRT-PCR. MicroRNA (miRNA) target prediction software and multiple bioinformatic approaches were used to construct a map of circRNA-miRNA interactions for the differentially expressed circRNAs. A total of 825 differentially expressed circular transcripts were identified in T2DM rats compared with control rats, among which 388 were upregulated and 437 were downregulated. Ten circRNAs were identified to have significant differences by qRT-PCR. GO analysis enriched terms such as organelle membrane and protein binding and the top enriched pathways for the circRNAs included MAPK signaling pathway. The differentially expressed circRNAs might involve in MAPK signaling pathway, apoptosis, and Ras signaling pathway. We speculate that these circRNAs, especially rno_circRNA_008565, can regulate the autophagy of islet β-cells via interactions with miRNA. Dysregulation of several circRNAs may play a role in T2DM development, and rno_circRNA_008565 may be a potential regulator of β-cell autophagy.


Sign in / Sign up

Export Citation Format

Share Document