scholarly journals Salt-Resistive Photothermal Materials and Microstructures for Interfacial Solar Desalination

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoqiang Yu ◽  
Qian Zhang ◽  
Xin Liu ◽  
Ning Xu ◽  
Lin Zhou

Solar interfacial evaporation, featured by high energy transfer efficiency, low cost, and environmental compatibility, has been widely regarded as a promising technology for solar desalination. However, the interplay between energy transfer and water transport in the same channels suggests that the tradeoff between high efficiency and long-term stability inherently exists in conventional photothermal nanomaterials. We summarize state-of-the-art research on various anti-salt clogging photothermal microstructures as long-term stable interfacial solar evaporators for solar desalination. The review starts with an overview of the current status and the fundamental limit of photothermal materials for solar desalination. Four representative strategies are analyzed in detail with the most recent experimental demonstrations, including fluid convection enhancement, surface wettability engineering, energy-mass-path decoupling, and surface chemistry engineering. Finally, this article focuses on the challenges in anti-salt clogging solar interfacial evaporators and potential point-of-use applications in the future.

2021 ◽  
Author(s):  
Jianqiao LIU ◽  
Ye HONG ◽  
Xinyue TIAN ◽  
Xiangxu MENG ◽  
Ge GAO ◽  
...  

Stannous chloride and thiourea are used as source materials to prepare SnO2 quantum dots in the aqueous solution by a facile hydrolysis-oxidation process. The quantum dots have an average size of 1.9 nm with good dispersibility as well as long-term stability, and are validated to be an effective photocatalyst for the degradation of organic oil pollutants in contaminated water. The pollutant is removed by the quantum dots exposed to ultraviolet-visible irradiation at room temperature. The optimized condition is concluded to be a solution with quantum dot concentration of 10-3 mol/L and the degradation speed reaches the maximum at the 12 th hour after irradiation. After 48 hours, 91.9 % of octane is removed, concluding a high degradation efficiency. The prepared SnO2 quantum dots are potentially applicable in the remediation of marine environment as they hold the advantages of high efficiency, low cost and being environmental-friendly. The promotion and inhibition mechanisms of the photocatalytic SnO2 QDs at low and high concentrations are discussed.


2018 ◽  
Vol 12 (2) ◽  
pp. 180-188 ◽  
Author(s):  
Ahmed Afif ◽  
Nikdalila Radenahmad ◽  
Juliana Zaini ◽  
Mohamed Abdalla ◽  
Seikh Rahman ◽  
...  

The new compositions of BaCe0.5Zr0.3Y0.15-xYbxZn0.05O3-? perovskite electrolytes (x = 0.1 and 0.15) were prepared by solid state synthesis and final sintering at 1500?C. The obtained ceramics were investigated using X-ray diffraction, scanning electron microscopy, thermo-gravimetric analysis and impedance spectroscopy. The refinement of XRD data confirmed cubic crystal structure with Pm3m space group for both samples. SEM morphology showed larger and compacted grains which enables obtaining of high density and high protonic conductivity. The relative densities of the samples were about 99% of the theoretical density after sintering at 1500?C. The protonic conductivities at 650?C were 2.8?10-4 S/cm and 4.2?10-3 S/cm for x = 0.1 and 0.15, respectively. The obtained results showed that higher Yb-content increases the ionic conductivity and both of these perovskites are promising electrolyte for intermediate temperature solid oxide fuel cells to get high efficiency, long-term stability and relatively low cost energy system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


1998 ◽  
Vol 13 (5) ◽  
pp. 1171-1176 ◽  
Author(s):  
S-H. Yip ◽  
D. Guay ◽  
S. Jin ◽  
E. Ghali ◽  
A. Van Neste ◽  
...  

The structural and electrochemical properties of the Ti–Ru–Fe–O system have been studied over the whole ternary metal compositional range, keeping constant the oxygen content at 30 at.%. The phase diagram was explored systematically by varying the composition of the material along one of the following axes: (i) constant Ru content of 16 at. %; (ii) constant Ti/Ru ratio of 2; (iii) constant Ti/Fe ratio of 1.6. For O/Ti ratios equal or below unity, the most prominent peaks observed in the x-ray diffraction patterns belong to a B2 structure. For O/Ti ratio larger than unity, stable titanium oxide phases are formed, which coexist with a cubic Fe-like or hcp-Ru like phases depending on the Fe/Ru ratio. Powder compositions with stoichiometry close to Ti2RuFeO2 are of interest due to good electrocatalytic properties, long-term stability, and low Ru content.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


2020 ◽  
Vol 117 (21) ◽  
pp. 11240-11246 ◽  
Author(s):  
Shuwang Wu ◽  
Yingjie Du ◽  
Yousif Alsaid ◽  
Dong Wu ◽  
Mutian Hua ◽  
...  

Ice accumulation causes various problems in our daily life for human society. The daunting challenges in ice prevention and removal call for novel efficient antiicing strategies. Recently, photothermal materials have gained attention for creating icephobic surfaces owing to their merits of energy conservation and environmental friendliness. However, it is always challenging to get an ideal photothermal material which is cheap, easily fabricating, and highly photothermally efficient. Here, we demonstrate a low-cost, high-efficiency superhydrophobic photothermal surface, uniquely based on inexpensive commonly seen candle soot. It consists of three components: candle soot, silica shell, and polydimethylsiloxane (PDMS) brushes. The candle soot provides hierarchical nano/microstructures and photothermal ability, the silica shell strengthens the hierarchical candle soot, and the grafted low-surface-energy PDMS brushes endow the surface with superhydrophobicity. Upon illumination under 1 sun, the surface temperature can increase by 53 °C, so that no ice can form at an environmental temperature as low as −50 °C and it can also rapidly melt the accumulated frost and ice in 300 s. The superhydrophobicity enables the melted water to slide away immediately, leaving a clean and dry surface. The surface can also self-clean, which further enhances its effectiveness by removing dust and other contaminants which absorb and scatter sunlight. In addition, after oxygen plasma treatment, the surface can restore superhydrophobicity with sunlight illumination. The presented icephobic surface shows great potential and broad impacts owing to its inexpensive component materials, simplicity, ecofriendliness, and high energy efficiency.


Author(s):  
David Chiaramonti ◽  
Anja Oasmaa ◽  
Yrjo¨ Solantausta

Biomass fast-pyrolysis oil (PO) is a liquid biofuel derived from lignocellulosic biomass: it offers several advantages compared to the direct us of solid bio fuels, such as high energy density, storability and transportability typical of liquid fuels, possibility to use the fuel in engines and turbines, easier downscaling of plants (which is a very important aspect for decentralized energy generation schemes). In addition, PO is the lowest cost biofuel, thus offering the possibility to penetrate also the large scale power generation market. Biomass POs have been studied and applications tested for many years, either for heat generation in medium-scale boilers or power generation. The present works reviews and analyses the most relevant experiences carried out so far and published results in power production from biomass PO. Power generation systems (PGS) which are here examined are gas turbines, diesel engines, stirling engines, as well as co-firing applications in large scale power plants (coal or natural gas plants). The main techniques for upgrading this biofuel and their impact on technologies are also shortly introduced and considered. The current status of development for each PO-based power generation option is discussed. This review work showed that long term demonstration (either technical or economical) is however still needed, even for the most developed technologies (use of PO in modified gas turbines and cofiring in natural gas stations): projects are on going to achieve long term demonstration.


Sign in / Sign up

Export Citation Format

Share Document