scholarly journals Superhydrophobic photothermal icephobic surfaces based on candle soot

2020 ◽  
Vol 117 (21) ◽  
pp. 11240-11246 ◽  
Author(s):  
Shuwang Wu ◽  
Yingjie Du ◽  
Yousif Alsaid ◽  
Dong Wu ◽  
Mutian Hua ◽  
...  

Ice accumulation causes various problems in our daily life for human society. The daunting challenges in ice prevention and removal call for novel efficient antiicing strategies. Recently, photothermal materials have gained attention for creating icephobic surfaces owing to their merits of energy conservation and environmental friendliness. However, it is always challenging to get an ideal photothermal material which is cheap, easily fabricating, and highly photothermally efficient. Here, we demonstrate a low-cost, high-efficiency superhydrophobic photothermal surface, uniquely based on inexpensive commonly seen candle soot. It consists of three components: candle soot, silica shell, and polydimethylsiloxane (PDMS) brushes. The candle soot provides hierarchical nano/microstructures and photothermal ability, the silica shell strengthens the hierarchical candle soot, and the grafted low-surface-energy PDMS brushes endow the surface with superhydrophobicity. Upon illumination under 1 sun, the surface temperature can increase by 53 °C, so that no ice can form at an environmental temperature as low as −50 °C and it can also rapidly melt the accumulated frost and ice in 300 s. The superhydrophobicity enables the melted water to slide away immediately, leaving a clean and dry surface. The surface can also self-clean, which further enhances its effectiveness by removing dust and other contaminants which absorb and scatter sunlight. In addition, after oxygen plasma treatment, the surface can restore superhydrophobicity with sunlight illumination. The presented icephobic surface shows great potential and broad impacts owing to its inexpensive component materials, simplicity, ecofriendliness, and high energy efficiency.

Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


2021 ◽  
Author(s):  
Chao Xu ◽  
Lei Xue ◽  
Yuan Cui ◽  
Songfeng Guo ◽  
Mengyang Zhai ◽  
...  

Abstract Landslides have posed a huge threat to the ecological environment and human society all over the world. As the most conventional reinforcement method, anti-slide piles are widely used in the reinforcement of slopes. Currently, more and more attentions have been paid to the low-cost and high-efficiency optimal design of anti-slide piles. However, limitations in the method of the optimization design for slope reinforced with piles still exist. In this paper, a new multi-objective comprehensive optimization method was proposed for the optimization of the slope reinforced with anti-slide piles. The factor of safety, internal force and deflection of piles were selected as the optimization indexes and the optimization index weight was determined by integrating the subjective and objective weight. The influence of the pile location, pile length and pile spacing on the reinforcement effect was analyzed by the numerical simulation. Through the simulation case analysis, the proposed model had achieved good effects on the optimization design of anti-slide piles, which could effectively reduce the engineering costs. The optimization results showed that the best reinforcement effect for the homogeneous slope could be obtained when the anti-slide piles with the critical pile length and small pile spacing was located in the middle of the slope. This provides a new solution for the optimization design of other types of complex slopes, and has broad application prospects.


Author(s):  
R. Mejri ◽  
Y. S. Peregudov ◽  
E. M. Gorbunova

Expediency of using natural glauconite material as a basis for the production of an environmentally friendly sorbent with hydrophobic and magnetic properties for liquidating oil and oil products spills mechanically and using a magnetic field has been substantiated and experimentally proved. Fractional, elemental and oxide compositions of the original mineral have been studied. The structure of glauconite fraction 0.045-0.1 mm has been investigated by transmission electron microscopy. It was found that the surface of the sample particles is heterogeneous with a large number of pores and cracks. Based on the experimental data, the optimal conditions for the production and use of powder and granular sorbents based on glauconite with specified properties were determined, at which a high degree of recovery (more than 90%) of oil with water and hard surfaces. The optimum temperature for obtaining a magnetic oil sorbent is 400 °C. The doses of stearic acid and iron (III) oxide were established at 5 wt. %, which provide hydrophobicity and magnetic properties to the synthesized sorbent. A high degree of oil (97%) and oil (98%) recovery when using a sorbent is achieved at a ratio of 1: 10 to sorbate. To eliminate oil and oil product spills, it is proposed to use granular ferromagnetic sorbents obtained by introducing carboxymethyl cellulose into the modified glauconite composition. oil and oil products granular sorbent increases in comparison with the original mineral by 1.2–2.2 times. Technological schemes for obtaining ferromagnetic hydrophobic and granular sorbents based on glauconite for collecting oil and oil products from water and solid surfaces have been developed. The synthesized sorbents are characterized by high efficiency, low cost, and environmental friendliness.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
N. Aldasheva

The article investigates the processes of preparing liquid fuel based on a mixture of coal from the Alai deposit (Kyrgyzstan) and water with the addition of other components, for combustion in various power plants and intended to replace organic fuels (solid fuel, fuel oil and gas). On the basis of the research results, a technological scheme for the preparation of coal-water fuel from the organic matter of the Alai deposit has been developed. Methods and technologies for the preparation of coal-water fuel are described. As a result, an efficient and energy-efficient method for producing coal-water fuel has been developed, which has a high energy potential, environmental friendliness, low cost, a wide range of applications and a fairly simple technology for its implementation.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3475 ◽  
Author(s):  
Shijie Zhang ◽  
Zhenguo Gao ◽  
Di Lan ◽  
Qian Jia ◽  
Ning Liu ◽  
...  

Nitrated-pyrazole-based energetic compounds have attracted wide publicity in the field of energetic materials (EMs) due to their high heat of formation, high density, tailored thermal stability, and detonation performance. Many nitrated-pyrazole-based energetic compounds have been developed to meet the increasing demands of high power, low sensitivity, and eco-friendly environment, and they have good applications in explosives, propellants, and pyrotechnics. Continuous and growing efforts have been committed to promote the rapid development of nitrated-pyrazole-based EMs in the last decade, especially through large amounts of Chinese research. Some of the ultimate aims of nitrated-pyrazole-based materials are to develop potential candidates of castable explosives, explore novel insensitive high energy materials, search for low cost synthesis strategies, high efficiency, and green environmental protection, and further widen the applications of EMs. This review article aims to present the recent processes in the synthesis and physical and explosive performances of the nitrated-pyrazole-based Ems, including monopyrazoles with nitro, bispyrazoles with nitro, nitropyrazolo[4,3-c]pyrazoles, and their derivatives, and to comb the development trend of these compounds. This review intends to prompt fresh concepts for designing prominent high-performance nitropyrazole-based EMs.


Author(s):  
Mir Mehraj Ud Din ◽  
Sampathkumar Ramakumar ◽  
Indu M.S ◽  
Ramaswamy Murugan

: Reliable energy storage is a censorious need for an extensive range of requisite such as portable electronic devices, transportation, medical devices, spacecraft and elsewhere. Among known storage devices, the lithium ion (Li+) batteries have enticed attention because of higher theoretical energy density. Nevertheless, state-of-the-art electrolyte in lithium batteries utilizing a Li+ salt dissolved in organic-type solvents poses severe safety concerns like flammability arising from dendrite formation. Next generation (beyond Li+) battery systems such as lithium sulphur (Li-S) batteries have gained interest in recent times. This battery system has been extensively revisited in an attempt to develop high energy batteries and is now considered as the technology of choice for hybrid vehicle electrification and grid storage. Higher theoretical capacity and higher theoretical energy density, environmental friendliness and low cost of active material make the Li-S batteries an ideal candidate to meet increasing energy requirements. This review looks at various advanced electrolytic systems with much emphasis on solid state electrolytic systems for Li-S batteries because of their striking properties. The technical issues of the sulphur cathode are also summarized and the strategies followed in recent years are highlighted in this review to address these issues. It is anticipated that Li-S batteries with efficient solid electrolytic system may replace the conventional insertion-type low energy density Li+ batteries in near future.


2011 ◽  
Vol 55-57 ◽  
pp. 2210-2213
Author(s):  
Hu Ran Liu

Hydraulic motor with swinging bevel gear is a new kind of hydraulic motor. There are many advantages of it over other kind hydraulic motor. The decelerating ratio is big, moment work ratio is high, energy consuming is low, and decelerating function is good. Compared with other general liquid presses motor, this type of motor has the all new construction with the function, being applicable to the low turning the soon big turning the moment specially, high- efficiency realm. A principle for studying this kind of new motor with realize technique, include go together with to flow to convert the technique, adjust soon principle with method, the wheel gear theories matches the function with many cogwheels engaged, whole machine is excellent to turn the design, the kind machine manufactures experiment etc. with function on a trial basis to.The item's research for the country inside blank, spread to move to the host simplification, economize the energy, decline the low cost having got the important meaning.


Sign in / Sign up

Export Citation Format

Share Document