scholarly journals Experimental Investigation on Hydraulic Fracture Morphology of Inter-Salt Shale Formation

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Zhenhui Bi ◽  
Xin Chang ◽  
Lei Wang ◽  
Hanzhi Yang

The inter-salt shale in the Qianjiang formation of Jianghan Basin in China is characterized by multiple salt-shale bedding planes, various rock strength, and high heterogeneity of rock mechanics. In this paper fracturing experiments under different conditions were carried out to study the effects of the injection velocity, type of fracturing fluid and interface strength on the propagation law of hydraulic fracture in the salt sedimentary rhythm there. In the meantime, Acoustic emission system and radial strain sensor were applied to monitor experimental process. The result indicates that 1) compared with the shale, there are four fracture propagation modes mainly being observed: passivating type (Mode I), “I”-type (Mode II), penetration type (Mode III) and mixed type ((Mode IV)), among which the mixed type is the relatively complex crack propagation mode. 2) With the increase of injection rate and viscosity of fracturing fluid, the hydraulic fracture will penetrate cementation surface more easily. 3) The increase of flow rate and viscosity will increase the breakdown pressure. The breakdown pressure of high strength cementation surface is 16.70% higher than that of low strength.

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 219-234 ◽  
Author(s):  
Zuorong Chen ◽  
Robert G. Jeffrey ◽  
Xi Zhang ◽  
James Kear

Summary In this paper, the problem of a hydraulic fracture (HF) interacting with a pre-existing natural fracture (NF) has been investigated with a cohesive zone finite-element model. The model fully couples fluid flow, fracture propagation, and elastic deformation, taking into account the friction between the contacting fracture surfaces and the interaction between the HF and the NF. The effect of the field conditions—such as in-situ stresses, rock and fracture mechanical and geometrical (initial conductivity of the NF) properties, intersection angle, and the treatment parameters (fracturing fluid viscosity and injection rate)—on the HF propagation behavior has been analyzed. The finite-element-modeling results provide detailed quantitative information on the development of various types of HF/NF interaction, interfacial stress distribution, fracture-geometry evolution, and injection-pressure history, and allow us to gain an in-depth understanding of the relative roles of various parameters. The value of a parameter calculated as the product of fracturing-fluid viscosity and injection rate can be used as an indicator to gauge if crossing or diverting behavior is more likely. In addition, using a finite-element approach allows the analysis to be extended to include the effects of fluid leakoff and poroelastic effect, and allows the study of HF height growth through a system of nonhomogeneous layers and their bedding planes.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xin Zhang ◽  
Yuqi Zhang ◽  
Tao Zhang

The stress disturbance effect will significantly affect the propagation path of hydraulic fractures in the composite rock reservoir. To reveal the influence mechanism of stress disturbance effect on the hydraulic fracture propagation, several groups of laboratory tests and simulation tests were carried out. The test results showed that the hydraulic fracture tip formed a disturbing stress field because of the pore water pressure. Before the hydraulic fracture was extended to the bedding plane, the bedding plane had been damaged under stress disturbance, and the disturbed fracture zone was formed. The propagation mode of hydraulic fracture at the bedding plane was highly sensitive to the formation of the disturbed fracture zone. The sensitivity is mainly reflected from two aspects. (1) Under the action of the hydraulic fracture tip disturbance stress, many microfractures are generated and penetrated into the disturbance fracture zone on the bedding plane. This behavior is accompanied by energy dissipation causing the bedding plane material to be significantly softened, and the energy required for hydraulic fracture propagation is reduced dramatically. (2) The formation of the disturbed fracture zone improves the degree of fragmentation of the bedding plane, and the permeability of the local area increases significantly, forming the dominant circulation path. The higher the development of the disturbed fracture zone, the greater the hydraulic fracture propagation tendency along the bedding plane. According to the formation characteristics of the bedding plane disturbed fracture zone, the author proposed a nonlinear fracture model of the bedding plane disturbed fracture zone and established the hydraulic fracture propagation path criterion. This paper further analyzed the influencing factors of the disturbed fracture zone’s formation conditions and found that the bedding plane’s cementation strength was the main factor affecting the development degree of the disturbed fracture zone.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 976 ◽  
Author(s):  
Zhaohui Chong ◽  
Qiangling Yao ◽  
Xuehua Li

Hydraulic fracturing is a key technology for the development of unconventional resources such as shale gas. Due to the existence of numerous bedding planes, shale reservoirs can be considered typical anisotropic materials. In anisotropic shale reservoirs, the complex hydraulic fracture network (HFN) formed by the interaction of hydraulic fracture (HF) and bedding plane (BP) is the key to fracturing treatment. In this paper, considering the anisotropic angle, stress state and injection rate, a series of hydraulic fracturing experiments were conducted to investigate the effect of anisotropic characteristics of shale reservoirs on HFN formation. The results showed that the breakdown pressure increased first and then decreased when the anisotropic angle changed at 0°–90°, while the circumferential displacement had the opposite trend with a small difference. When θ = 0°, fracturing efficiency of shale specimens was much higher than that under other operating conditions. When θ ≤ 15°, the bedding-plane mode is ubiquitous in all shale reservoirs. While θ ranged from 30°–45°, a comprehensive propagation pattern of bedding-plane and crossing is presented. When θ ≥ 60°, the HFN pattern changes from comprehensive mode to crossing mode. The propagation pattern obtained from physical experiments were verified by theoretical analysis. The closure proportion of the circumferential displacement was the highest when the propagation pattern was the bedding-plane mode (θ ≤ 15°), following by crossing. The closure proportion was minimum only when the bedding-plane and crossing mode were simultaneously presented in the HFN. The results can provide some basic data for the design in hydraulic fracturing of tight oil/gas reservoirs.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3502 ◽  
Author(s):  
Yintong Guo ◽  
Peng Deng ◽  
Chunhe Yang ◽  
Xin Chang ◽  
Lei Wang ◽  
...  

Deep carbonate reservoirs are rich in oil and gas resources. However, due to poor pore connectivity and low permeability, it is necessary to adopt hydraulic fracturing technology for their development. The mechanism of hydraulic fracturing for fracture initiation and propagation in carbonate rocks remains unclear, especially with regard to selection of the type of fracturing fluid and the fracturing parameters. In this article, an experimental study focusing on the mechanisms of hydraulic fracturing fracture initiation and propagation is discussed. Several factors were studied, including the type of injecting fracturing fluids, pump flow rate, fracturing pressure curve characteristics, and fracture morphology. The results showed the following: (1) The viscosity of fracturing fluid had a significant effect on fracturing breakdown pressure. Under the same pump flow rate, the fracturing breakdown pressure of slick water was the lowest. Fracturing fluids with low viscosity could easily activate weakly natural fractures or filled fractures, leading to open microcracks, and could effectively reduce the fracturing breakdown pressure. (2) The fluctuations in fracturing pump pressure corresponded with the acoustic emission hits and changes in radial strain; for every drop of fracturing pressure, acoustic emission hits and changes in radial strain were mutated. (3) Under the same fracturing fluid, the pump flow rate mainly affected fracturing breakdown pressure and had little effect on fracture morphology. (4) The width of the main fracture was affected by the viscosity and pump flow rate. Maximum changes in radial strain at the fracturing breakdown pressure point occurred when the fracturing fluid was guar gum. (5) With gelled acid and cross-linked acid fracturing, the main fractures were observed on the surface. The extension of the fracturing crack was mainly focused near the crack initiation parts. The crack expanded asymmetrically; the wormhole was dissolved to break through to the surface of the specimen. (6) The dissolution of gelled acid solution could increase the width of the fracturing crack and improve the conductivity of carbonate reservoirs.


2017 ◽  
Vol 12 (1) ◽  
pp. 126-134
Author(s):  
A.M. Ilyasov

Based on the generalized Perkins-Kern-Nordgren model (PKN) for the development of a hyperbolic type vertical hydraulic fracture, an exact solution is obtained for the hydraulic fracture self-oscillations after terminating the fracturing fluid injection. These oscillations are excited by a rarefaction wave that occurs after the injection is stopped. The obtained solution was used to estimate the height, width and half-length of the hydraulic fracture at the time of stopping the hydraulic fracturing fluid injection based on the bottomhole pressure gauge data.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 292
Author(s):  
Maria Bobrova ◽  
Sergey Stanchits ◽  
Anna Shevtsova ◽  
Egor Filev ◽  
Vladimir Stukachev ◽  
...  

The heterogeneity of the rock fabric is a significant factor influencing the initiation and propagation of a hydraulic fracture (HF). This paper presents a laboratory study of HF created in six shale-like core samples provided by RITEK LLC collected from the same well, but at different depths. For each tested sample, we determined the breakdown pressure, the HF growth rate, and the expansion of the sample at the moment when the HF reaches the sample surface. Correlations were established between the HF parameters and the geomechanical characteristics of the studied samples, and deviations from the general relationships were explained by the influence of the rock matrix. The analysis of the moment tensor inversion of radiated acoustic emission (AE) signals allows us to separate AE signals with a dominant shear component from the signals with a significant tensile component. The direction of microcrack opening was determined, which is in good agreement with the results of the post-test X-ray CT analysis of the created HF. Thus, it has been shown that a combination of several independent laboratory techniques allows one to reliably determine the parameters that can be used for verification of hydraulic fracturing models.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


SPE Journal ◽  
2015 ◽  
Vol 20 (06) ◽  
pp. 1317-1325 ◽  
Author(s):  
Andrew P. Bunger ◽  
Guanyi Lu

Summary The premise of classical hydraulic-fracture-breakdown models is that hydraulic-fracture growth can only start when the wellbore pressure reaches a critical value that is sufficient to overcome the tensile strength of the rock. However, rocks are well-known to exhibit static fatigue; that is, delayed failure at stresses less than the tensile strength. In this paper, we explore the consequences of delayed failure on axially oriented initiation of multiple hydraulic fractures. Specifically, given a certain breakdown pressure, we investigate the conditions under which subsequent hydraulic fracture(s) can begin within the time frame of a stimulation treatment in regions of higher stress and/or strength because of delayed-failure mechanisms. The results show that wells completed in shallower formations are more sensitive to variations in strength, whereas wells completed in deeper formations are more sensitive to variations in stress. Furthermore, cases in which all hydraulic fractures break down according to the same pressurization regime—that is, all are “fast” (nonfluid-penetrating) pressurization or else all are “slow” (uniformly pressurized fluid-penetrating) pressurization cases—are highly sensitive to small stress/strength variability. On the other hand, if the first hydraulic-fracture initiation is in the “fast”-pressurization regime and subsequent fracture(s) are in the “slow”-pressurization regime, then the system is robust to a much-higher degree of variability in stress/strength. Practically, this work implies that methods aimed at moderately reducing the variability in stress/strength among the possible initiation points (i.e., perforation clusters) within a particular stage can have a strong effect on whether multiple hydraulic fractures will begin. In addition, this analysis implies that pumping strategies that encourage “fast,” nonpenetrative breakdown of the first initiation point followed by the opportunity for fluid-penetrating, “slow” breakdown of subsequent initiation points could be effective at encouraging multiple-hydraulic-fracture initiation.


2020 ◽  
Author(s):  
Maria Bobrova ◽  
Egor Filev ◽  
Anna Shevtsova ◽  
Sergey Stanchits ◽  
Vladimir Stukachev ◽  
...  

<p>Understanding the processes of Hydraulic Fracturing (HF) initiation and propagation in different types of rocks is important for the design and optimization of HF during the exploitation of underground resources. The main goals were to study the dynamics of the process of hydraulic fracture growth and possible optimization of HF technology for both homogeneous and heterogeneous rocks. Laboratory experiments on HF with different injection parameters were carried out on natural limestone, dolomite and shale specimens. The dynamics of HF process was monitored by Acoustic Emission (AE) technique, on the analogy of induced microseismicity monitoring of HF in the field conditions. The shape of created HF and the size of leak-off zone were analyzed by X-Ray CT scanning technique after the testing.</p><p>Experiments on dolomite were conducted using fluids with different viscosities (1000-10000 cP) injected into the rock with a rate of 0.5 ml/min. In case of low viscosity, we observed low AE activity. After the test, the sample was cut in several pieces transverse to the expected fracture plane. We have found that HF has initiated, but did not reach the sample boundaries and leak-off was significant. The ten times increase of fluid viscosity resulted in significantly increased AE activity, smaller size of leak-off zone and higher breakdown pressure (21.8 against 18.7 MPa). The post-test 3D shape of HF surface obtained by X-Ray CT closely correlates with 3D shape of localized AE events, confirming that the fracture propagated in the direction of maximal stress, as expected. It means that viscosity of fracturing fluid had a significant effect on fracturing breakdown pressure and fracture behavior.</p><p>The influence of different rock types on hydraulic fracturing was studied with dolomite, limestone and shale samples. In case of dolomite and shale, sufficient number of Acoustic Emission events were recorded, which allowed tracing the direction and dynamics of fracture propagation. However, for the limestone, a very small number of AE events were localized with the same parameters of injected fluid. Comparison of dolomite and shale HFs shows that the crack in the shale had a more complex shape, deviating from the maximal stress direction, which was explained by rock heterogeneity, by the presence of natural cracks and inclined planes of weakness. It led us to conclusion that the rock fabric plays an important role in the behavior of hydraulic fracture in heterogeneous rock.</p>


Sign in / Sign up

Export Citation Format

Share Document