scholarly journals Sphaeropsis sapinea and Associated Endophytes in Scots Pine: Interactions and Effect on the Host Under Variable Water Content

2021 ◽  
Vol 4 ◽  
Author(s):  
Kathrin Blumenstein ◽  
Johanna Bußkamp ◽  
Gitta Jutta Langer ◽  
Rebekka Schlößer ◽  
Natalia Marion Parra Rojas ◽  
...  

The ascomycete Sphaeropsis sapinea is the causal agent of the Diplodia Tip Blight disease on pines and other conifer species. This fungus has a symptomless endophytic life stage. Disease symptoms become visible when trees have been weakened by abiotic stress, usually related to warmer temperatures and drought. Currently, this disease is observed regularly in Scots pine (Pinus sylvestris) sites in parts of Europe, such as Germany, increasing dramatically in the last decade. Changes in climatic conditions will gradually increase the damage caused by this fungus, because it is favored by elevated temperature. Thus, host trees with reduced vitality due to climate change-related environmental stress are expected to be more susceptible to an outbreak of Diplodia Tip Blight disease. There is currently no established and effective method to control S. sapinea. This project aims to reveal the nature of the endophyte community of Scots pine. Utilizing the antagonistic core community of endophytes could serve as a novel tool for disease control. Results from this study provide a starting point for new solutions to improve forest health and counter S. sapinea disease outbreaks. We screened potential antagonistic endophytes against S. sapinea and infected Scots pine seedlings with the most common endophytes and S. sapinea alone and combination. The host was stressed by limiting access to water. The antagonism study revealed 13 possible fungi with the ability to inhibit the growth of S. sapinea in vitro, for example Sydowia polyspora. None of the tested co-infected fungi (Desmazierella acicola, Didymellaceae sp., Microsphaeropsis olivacea, Sydowia polyspora, and Truncatella conorum-piceae) showed strong necrosis development in vivo, even when host stress increased due to drought. However, the infection experiment demonstrated that drought conditions enhance the effect of the disease outbreak, triggering S. sapinea to cause more necrosis in the infected twigs.

2021 ◽  
Vol 7 (6) ◽  
pp. 428
Author(s):  
Men Thi Ngo ◽  
Minh Van Nguyen ◽  
Jae Woo Han ◽  
Myung Soo Park ◽  
Hun Kim ◽  
...  

In the search for antifungal agents from marine resources, we recently found that the culture filtrate of Trichoderma longibrachiatum SFC100166 effectively suppressed the development of tomato gray mold, rice blast, and tomato late blight. The culture filtrate was then successively extracted with ethyl acetate and n-butanol to identify the fungicidal metabolites. Consequently, a new compound, spirosorbicillinol D (1), and a new natural compound, 2′,3′-dihydro-epoxysorbicillinol (2), together with 11 known compounds (3–13), were obtained from the solvent extracts. The chemical structures were determined by spectroscopic analyses and comparison with literature values. The results of the in vitro antifungal assay showed that of the tested fungal pathogens, Phytophthora infestans was the fungus most sensitive to the isolated compounds, with MIC values ranging from 6.3 to 400 µg/mL, except for trichotetronine (9) and trichodimerol (10). When tomato plants were treated with the representative compounds (4, 6, 7, and 11), bisvertinolone (6) strongly reduced the development of tomato late blight disease compared to the untreated control. Taken together, our results revealed that the culture filtrate of T. longibrachiatum SFC100166 and its metabolites could be useful sources for the development of new natural agents to control late blight caused by P. infestans.


2013 ◽  
Vol 168 (6) ◽  
pp. R85-R93 ◽  
Author(s):  
Felix Beuschlein

Arterial hypertension is a major cardiovascular risk factor that affects between 10 and 40% of the population in industrialized countries. Primary aldosteronism (PA) is the most common form of secondary hypertension with an estimated prevalence of around 10% in referral centers and 4% in a primary care setting. Despite its high prevalence until recently, the underlying genetic and molecular basis of this common disease had remained largely obscure. Over the past decade, a number of insights have been achieved that have relied onin vitrocellular systems, wild-type and genetically modifiedin vivomodels, as well as clinical studies in well-characterized patient populations. This progress has been made possible by a number of independent technical developments including that of specific hormone assays that allow measurement in small sample volumes as well as genetic techniques that enable high-throughput sequencing of a large number of samples. Furthermore, animal models have provided important insights into the physiology of aldosterone regulation that have served as a starting point for investigation of mechanisms involved in autonomous aldosterone secretion. Finally, national and international networks that have built up registries and biobanks have been instrumental in fostering translational research endeavors in PA. Therefore, it is to be expected that in the near future, further pathophysiological mechanisms that result in autonomous aldosterone secretion will be unraveled.


1993 ◽  
Vol 47 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Stephane Mottin ◽  
Canh Tran-Minh ◽  
Pierre Laporte ◽  
Raymond Cespuglio ◽  
Michel Jouvet

At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.


2009 ◽  
Vol 83 (22) ◽  
pp. 11979-11982 ◽  
Author(s):  
Jackie Pallister ◽  
Deborah Middleton ◽  
Gary Crameri ◽  
Manabu Yamada ◽  
Reuben Klein ◽  
...  

ABSTRACT Hendra virus and Nipah virus, two zoonotic paramyxoviruses in the genus Henipavirus, have recently emerged and continue to cause sporadic disease outbreaks in humans and animals. Mortality rates of up to 75% have been reported in humans, but there are presently no clinically licensed therapeutics for treating henipavirus-induced disease. A recent report indicated that chloroquine, used in malaria therapy for over 70 years, prevented infection with Nipah virus in vitro. Chloroquine was assessed using a ferret model of lethal Nipah virus infection and found to be ineffective against Nipah virus infection in vivo.


2021 ◽  
Author(s):  
Scott B Biering ◽  
Francielle Tramontini Gomes de Sousa ◽  
Laurentia V. Tjang ◽  
Felix Pahmeier ◽  
Richard Ruan ◽  
...  

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.


2020 ◽  
Vol 25 (10) ◽  
pp. 1123-1140
Author(s):  
Jilan Nazeam ◽  
Esraa Z. Mohammed ◽  
Mariam Raafat ◽  
Mariam Houssein ◽  
Asmaa Elkafoury ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of pandemic coronavirus disease 2019 (COVID-19). So far, no approved therapy has been developed to halt the spread of the pathogen, and unfortunately, the strategies for developing a new therapy will require a long time and very extensive resources. Therefore, drug repurposing has emerged as an ideal strategy toward a smart, versatile, quick way to confine the lethal disease. In this endeavor, natural products have been an untapped source for new drugs. This review represents the confederated experience of multidisciplinary researchers of 99 articles using several databases: Google Scholar, Science Direct, MEDLINE, Web of Science, Scopus, and PubMed. To establish the hypothesis, a Bayesian perspective of a systematic review was used to outline evidence synthesis. Our docking documentation of 69 compounds and future research agenda assumptions were directed toward finding an effective and economic anti-COVID-19 treatment from natural products. Glucosinolate, flavones, and sulfated nitrogenous compounds demonstrate direct anti-SARS-CoV-2 activity through inhibition protease enzymes and may be considered potential candidates against coronavirus. These findings could be a starting point to initiate an integrative study that may encompass interested scientists and research institutes to test the hypothesis in vitro, in vivo, and in clinics after satisfying all ethical requirements.


2018 ◽  
Vol 5 (12) ◽  
pp. 181483 ◽  
Author(s):  
Lauren E. Jamieson ◽  
Angela Li ◽  
Karen Faulds ◽  
Duncan Graham

Raman spectroscopy has been used extensively for the analysis of biological samples in vitro , ex vivo and in vivo . While important progress has been made towards using this analytical technique in clinical applications, there is a limit to how much chemically specific information can be extracted from a spectrum of a biological sample, which consists of multiple overlapping peaks from a large number of species in any particular sample. In an attempt to elucidate more specific information regarding individual biochemical species, as opposed to very broad assignments by species class, we propose a bottom-up approach beginning with a detailed analysis of pure biochemical components. Here, we demonstrate a simple ratiometric approach applied to fatty acids, a subsection of the lipid class, to allow the key structural features, in particular degree of saturation and chain length, to be predicted. This is proposed as a starting point for allowing more chemically and species-specific information to be elucidated from the highly multiplexed spectrum of multiple overlapping signals found in a real biological sample. The power of simple ratiometric analysis is also demonstrated by comparing the prediction of degree of unsaturation in food oil samples using ratiometric and multivariate analysis techniques which could be used for food oil authentication.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 866 ◽  
Author(s):  
Daria Rybakova ◽  
Mariann Wikström ◽  
Fia Birch-Jensen ◽  
Joeke Postma ◽  
Ralf Udo Ehlers ◽  
...  

Microbiome management is a promising way to suppress verticillium wilt, a severe disease in Brassica caused by Verticillium longisporum. In order to improve current biocontrol strategies, we compared bacterial Verticillium antagonists in different assays using a hierarchical selection and evaluation scheme, and we integrated outcomes of our previous studies. The result was strongly dependent on the assessment method chosen (in vitro, in vivo, in situ), on the growth conditions of the plants and their genotype. The most promising biocontrol candidate identified was a Brassica endophyte Serratia plymuthica F20. Positive results were confirmed in field trials and by microscopically visualizing the three-way interaction. Applying antagonists in seed treatment contributes to an exceptionally low ecological footprint, supporting efficient economic and ecological solutions to controlling verticillium wilt. Indigenous microbiome, especially soil and seed microbiome, has been identified as key to understanding disease outbreaks and suppression. We suggest that verticillium wilt is a microbiome-driven disease caused by a reduction in microbial diversity within seeds and in the soil surrounding them. We strongly recommend integrating microbiome data in the development of new biocontrol and breeding strategies and combining both strategies with the aim of designing healthy microbiomes, thus making plants more resilient toward soil-borne pathogens.


Sign in / Sign up

Export Citation Format

Share Document