scholarly journals Based on Principles and Insights of COVID-19 Epidemiology, Genome Sequencing, and Pathogenesis: Retrospective Analysis of Sinigrin and ProlixinRX (Fluphenazine) Provides Off-Label Drug Candidates

2020 ◽  
Vol 25 (10) ◽  
pp. 1123-1140
Author(s):  
Jilan Nazeam ◽  
Esraa Z. Mohammed ◽  
Mariam Raafat ◽  
Mariam Houssein ◽  
Asmaa Elkafoury ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of pandemic coronavirus disease 2019 (COVID-19). So far, no approved therapy has been developed to halt the spread of the pathogen, and unfortunately, the strategies for developing a new therapy will require a long time and very extensive resources. Therefore, drug repurposing has emerged as an ideal strategy toward a smart, versatile, quick way to confine the lethal disease. In this endeavor, natural products have been an untapped source for new drugs. This review represents the confederated experience of multidisciplinary researchers of 99 articles using several databases: Google Scholar, Science Direct, MEDLINE, Web of Science, Scopus, and PubMed. To establish the hypothesis, a Bayesian perspective of a systematic review was used to outline evidence synthesis. Our docking documentation of 69 compounds and future research agenda assumptions were directed toward finding an effective and economic anti-COVID-19 treatment from natural products. Glucosinolate, flavones, and sulfated nitrogenous compounds demonstrate direct anti-SARS-CoV-2 activity through inhibition protease enzymes and may be considered potential candidates against coronavirus. These findings could be a starting point to initiate an integrative study that may encompass interested scientists and research institutes to test the hypothesis in vitro, in vivo, and in clinics after satisfying all ethical requirements.

2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2117
Author(s):  
Vlad Groza ◽  
Mihai Udrescu ◽  
Alexandru Bozdog ◽  
Lucreţia Udrescu

Drug repurposing is a valuable alternative to traditional drug design based on the assumption that medicines have multiple functions. Computer-based techniques use ever-growing drug databases to uncover new drug repurposing hints, which require further validation with in vitro and in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19 (designing new drugs require too much time). This paper introduces a new, completely automated computational drug repurposing pipeline based on drug–gene interaction data. We obtained drug–gene interaction data from an earlier version of DrugBank, built a drug–gene interaction network, and projected it as a drug–drug similarity network (DDSN). We then clustered DDSN by optimizing modularity resolution, used the ATC codes distribution within each cluster to identify potential drug repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally, using the best modularity resolution found with our method, we applied our pipeline to the latest DrugBank drug–gene interaction data to generate a comprehensive drug repurposing hint list.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4568 ◽  
Author(s):  
Mayara Castro de Morais ◽  
Jucieudo Virgulino de Souza ◽  
Carlos da Silva Maia Bezerra Filho ◽  
Silvio Santana Dolabella ◽  
Damião Pergentino de Sousa

Trypanosomiases are diseases caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans, this includes Chagas disease and African trypanosomiasis. There are few therapeutic options, and there is low efficacy to clinical treatment. Therefore, the search for new drugs for the trypanosomiasis is urgent. This review describes studies of the trypanocidal properties of essential oils, an important group of natural products widely found in several tropical countries. Seventy-seven plants were selected from literature for the trypanocidal activity of their essential oils. The main chemical constituents and mechanisms of action are also discussed. In vitro and in vivo experimental data show the therapeutic potential of these natural products for the treatment of infections caused by species of Trypanosoma.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 937 ◽  
Author(s):  
Dongdong Wang ◽  
Jiansheng Huang ◽  
Andy Wai Kan Yeung ◽  
Nikolay T. Tzvetkov ◽  
Jarosław O. Horbańczuk ◽  
...  

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there have been more than 10 million reported cases, more than 517,000 deaths in 215 countries, areas or territories. There is no effective antiviral medicine to prevent or treat COVID-19. Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. There is increasing number of publications reporting the effect of natural products and traditional medicine products on COVID-19. In our review, we provide an overview of natural products and their derivatives or mimics, as well as traditional medicine products, which were reported to exhibit potential to inhibit SARS-CoV-2 infection in vitro, and to manage COVID-19 in vivo, or in clinical reports or trials. These natural products and traditional medicine products are categorized in several classes: (1) anti-malaria drugs including chloroquine and hydroxychloroquine, (2) antivirals including nucleoside analogs (remdesivir, favipiravir, β-D-N4-hydroxycytidine, ribavirin and among others), lopinavir/ritonavir and arbidol, (3) antibiotics including azithromycin, ivermectin and teicoplanin, (4) anti-protozoal drug, emetine, anti-cancer drug, homoharringtonine, and others, as well as (5) traditional medicine (Lian Hua Qing Wen Capsule, Shuang Huang Lian Oral Liquid, Qingfei Paidu Decoction and Scutellariae Radix). Randomized, double-blind and placebo-controlled large clinical trials are needed to provide solid evidence for the potential effective treatment. Currently, drug repurposing is a promising strategy to quickly find an effective treatment for COVID-19. In addition, carefully combined cocktails need to be examined for preventing a COVID-19 pandemic and the resulting global health concerns.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Justus Amuche Nweze ◽  
Florence N. Mbaoji ◽  
Yan-Ming Li ◽  
Li-Yan Yang ◽  
Shu-Shi Huang ◽  
...  

Abstract Background Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. Main text We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. Conclusions It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


2021 ◽  
Vol 10 (8) ◽  
pp. e38610817073
Author(s):  
Daniel Lopes Araújo ◽  
Célio Pereira de Sousa Júnior ◽  
Maria Carolina Oliveira Silva ◽  
Vinicius Santos Silva ◽  
Samanta de Abreu Gonçalves ◽  
...  

Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania and characterized by the formation of skin ulcers. Despite the large number of cases, reaching worldwide proportions, there are many factors to be discussed regarding the treatment of the disease, which although much discussed, is still poorly elucidated. The objective of this review study is to identify the main anti-Leishmania mechanisms of Annona glabra L. (Annonaceae). This is a literature review study. To this end, we used the following descriptors in the search: natural products, leishmaniasis, mechanism of action and Leishmania (together and separately). In the selection criteria we opted for full articles, in the period 2012 - 2021 (last 10 years), in Portuguese and English. The searches were performed in the following databases: Scientific Electronic Library Online (SciELO), Latin American and Caribbean Literature on Health Sciences (LILACS) and Google Scholar. The articles were selected first by title, then by abstract, and finally by complete reading. The potential of natural products and their use in traditional medicine for the treatment of diseases makes them the target of research for new drugs. Different Annona species have demonstrated antileishmanial activity when evaluated in vitro. The substances that show leishmanicidal activity in Annona glabra extract are the alkaloids. New studies can be developed to elucidate even more specifically the effects of this natural product in vivo, in an attempt to obtain a new pharmacological alternative for the treatment of leishmaniasis.


2021 ◽  
Author(s):  
Shengwei Ji ◽  
Mingming Liu ◽  
Eloiza May Galon ◽  
Mohamed Abdo Rizk ◽  
Bumduuren Tuvshintulga ◽  
...  

Abstract Background: Drug resistance and severe side effects are major challenges in the treatment of babesiosis as they lead to less choices for treatment. Development of new drugs to enrich the treatment strategies and delay the emergence of drug resistance in parasites is still needed. Naphthoquine (NQ) combined with artemisinin treats Plasmodium infection by rapid parasite clearance. The current study repurposed NQ as a babesiosis drug treatment by evaluating the effects of naphthoquine phosphate (NQP) as a single dose treatment for babesiosis. Methods: In vitro anti-Babesia activity of NQP was tested on Babesia gibsoni cultures. The inhibition of parasite growth was verified using a SYBR green I-based fluorescence assay. In vivo efficacy of NQP was evaluated using BALB/c mice infected with Babesia rodhaini. The parasitemia level and hematocrit values were monitored. Results: The half maximal inhibitory concentration of NQP against B. gibsoni in vitro was 3.3 ± 0.5 μM. Oral administration of NQP for 5 successive days at a dose of 40 mg/kg of body weight resulted in significant inhibition on parasite growth compared with the control group. All mice in NQP-treated group survived, whereas the mice in control group died between days 6 and 9 post infection. Conclusion: This is the first study to evaluate the anti-Babesia activity of NQP in vitro and in vivo. The results showed that NQP is a promising drug for babesiosis treatment and drug repurposing may provide new treatment strategies for babesiosis.


Author(s):  
Cynthia Vanesa Rivero ◽  
Santiago José Martínez ◽  
Paul Novick ◽  
Juan Agustín Cueto ◽  
Betiana Nebaí Salassa ◽  
...  

T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.


2021 ◽  
Vol 28 ◽  
Author(s):  
Joanda Paolla Raimundo e Silva ◽  
Chonny Alexander Herrera Acevedo ◽  
Thalisson Amorim de Souza ◽  
Renata Priscila Barros de Menezes ◽  
Zoe L. Sessions ◽  
...  

Background: Natural products are useful agents for the discovery of new lead-compounds and effective drugs to combat coronaviruses (CoV). Objective: The present work provides an overview of natural substances, plant extracts, and essential oils as potential antiSARS-CoV agents. In addition, this work evaluates their drug-like properties which are essential in the selection of compounds in order to accelerate the drug development process. Methods: The search was carried out using PubMed, ScienceDirect and SciFinder. Articles addressing plant-based natural products as potential SARS-CoV or SARS-CoV-2 agents within the last seventeen years were analyzed and selected. The descriptors for Chemometrics analyzes were obtained in alvaDesc and the principal component analyzes (PCA) were carried out in SIMCA version 13.0. Results: Based on in vitro assays and computational analyzes, this review covers twenty nine medicinal plant species and more than 300 isolated substances as potential anti-coronavirus agents. Among them, flavonoids and terpenes were the most promising compound classes. In silico analyses of drug-like properties corroborate these findings and indicate promising candidates for in vitro and in vivo studies to validate their activity. Conclusion: This paper highlights the role of ethnopharmacology in drug discovery and simulates the use of integrative (in silico/ in vitro) and chemocentric approaches to strengthen current studies and guide future research in the field of antivirals agents.


Sign in / Sign up

Export Citation Format

Share Document