scholarly journals Interchromosomal interactions: A genomic love story of kissing chromosomes

2018 ◽  
Vol 218 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Philipp G. Maass ◽  
A. Rasim Barutcu ◽  
John L. Rinn

Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, but also interchromosomal interactions, a less studied feature of chromosomes, are required for proper physiological gene-expression programs. Here, we review recent studies with emerging insights into where and why cross-chromosomal communication is relevant. Specifically, we discuss how long noncoding RNAs (lncRNAs) and three-dimensional gene positioning are involved in genome organization and how low-throughput (live-cell imaging) and high-throughput (Hi-C and SPRITE) techniques contribute to understand the fundamental properties of interchromosomal interactions.

2021 ◽  
Author(s):  
Alice Sandmeyer ◽  
Lili Wang ◽  
Wolfgang Hübner ◽  
Marcel Müller ◽  
Benjamin Chen ◽  
...  

2020 ◽  
Author(s):  
Patricia A. Clow ◽  
Nathaniel Jillette ◽  
Jacqueline J. Zhu ◽  
Albert W. Cheng

AbstractThree-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and low signal-to-noise ratios (SNRs), and are thus mostly applicable to repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method, with an enhanced SNR, that allows for one nonrepetitive genomic locus to be labeled using a single sgRNA. We constructed Casilio dual-color probes to visualize the dynamic interactions of cohesin-bound elements in single live cells. By forming a binary sequence of multiple Casilio probes (PISCES) across a continuous stretch of DNA, we track the dynamic 3D folding of a 74kb genomic region over time. This method offers unprecedented resolution and scalability for delineating the dynamic 4D nucleome.One Sentence SummaryCasilio enables multiplexed live cell imaging of nonrepetitive DNA loci for illuminating the real-time dynamics of genome structures.


2014 ◽  
Vol 25 (7) ◽  
pp. 1111-1126 ◽  
Author(s):  
Merja Joensuu ◽  
Ilya Belevich ◽  
Olli Rämö ◽  
Ilya Nevzorov ◽  
Helena Vihinen ◽  
...  

The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.


Biomaterials ◽  
2003 ◽  
Vol 24 (19) ◽  
pp. 3265-3275 ◽  
Author(s):  
Davide Girotto ◽  
Serena Urbani ◽  
Paola Brun ◽  
Davide Renier ◽  
Rolando Barbucci ◽  
...  

2014 ◽  
Vol 42 (11) ◽  
pp. e90-e90 ◽  
Author(s):  
Ilchung Shin ◽  
Judhajeet Ray ◽  
Vinayak Gupta ◽  
Muslum Ilgu ◽  
Jonathan Beasley ◽  
...  

2003 ◽  
Vol 4 (2) ◽  
pp. 208-215 ◽  
Author(s):  
David W. Galbraith

The tissues and organs of multicellular eukaryotes are frequently observed to comprise complex three-dimensional interspersions of different cell types. It is a reasonable assumption that different global patterns of gene expression are found within these different cell types. This review outlines general experimental strategies designed to characterize these global gene expression patterns, based on a combination of methods of transgenic fluorescent protein (FP) expression and targeting, of flow cytometry and sorting and of high-throughput gene expression analysis.


2009 ◽  
Vol 48 (9) ◽  
pp. 097003 ◽  
Author(s):  
Hieu M. Dang ◽  
Takehito Kawasumi ◽  
Gen Omura ◽  
Toshiyuki Umano ◽  
Shin'ichiro Kajiyama ◽  
...  

2006 ◽  
Vol 312 (4) ◽  
pp. 443-456 ◽  
Author(s):  
Horst Wolff ◽  
Kamyar Hadian ◽  
Manja Ziegler ◽  
Claudia Weierich ◽  
Susanne Kramer-Hammerle ◽  
...  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Stephanie I. Nuñez-Olvera ◽  
Jonathan Puente-Rivera ◽  
Rosalio Ramos-Payán ◽  
Carlos Pérez-Plasencia ◽  
Yarely M. Salinas-Vera ◽  
...  

A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.


Sign in / Sign up

Export Citation Format

Share Document