scholarly journals Systematic Analysis of Differential H3K27me3 and H3K4me3 Deposition in Callus and Seedling Reveals the Epigenetic Regulatory Mechanisms Involved in Callus Formation in Rice

2020 ◽  
Vol 11 ◽  
Author(s):  
Nannan Zhao ◽  
Kang Zhang ◽  
Chunchao Wang ◽  
Hengyu Yan ◽  
Yue Liu ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huai-Bin Hu ◽  
Zeng-Qing Song ◽  
Guang-Ping Song ◽  
Sen Li ◽  
Hai-Qing Tu ◽  
...  

AbstractDynamic assembly and disassembly of primary cilia controls embryonic development and tissue homeostasis. Dysregulation of ciliogenesis causes human developmental diseases termed ciliopathies. Cell-intrinsic regulatory mechanisms of cilia disassembly have been well-studied. The extracellular cues controlling cilia disassembly remain elusive, however. Here, we show that lysophosphatidic acid (LPA), a multifunctional bioactive phospholipid, acts as a physiological extracellular factor to initiate cilia disassembly and promote neurogenesis. Through systematic analysis of serum components, we identify a small molecular—LPA as the major driver of cilia disassembly. Genetic inactivation and pharmacological inhibition of LPA receptor 1 (LPAR1) abrogate cilia disassembly triggered by serum. The LPA-LPAR-G-protein pathway promotes the transcription and phosphorylation of cilia disassembly factors-Aurora A, through activating the transcription coactivators YAP/TAZ and calcium/CaM pathway, respectively. Deletion of Lpar1 in mice causes abnormally elongated cilia and decreased proliferation in neural progenitor cells, thereby resulting in defective neurogenesis. Collectively, our findings establish LPA as a physiological initiator of cilia disassembly and suggest targeting the metabolism of LPA and the LPA pathway as potential therapies for diseases with dysfunctional ciliogenesis.


2015 ◽  
Vol 396 (12) ◽  
pp. 1301-1313 ◽  
Author(s):  
Christos Meristoudis ◽  
Theoni Trangas ◽  
Andromachi Lambrianidou ◽  
Vasilios Papadopoulos ◽  
Euthymios Dimitriadis ◽  
...  

Abstract Fine tuning of c-MYC expression is critical for its action and is achieved by several regulatory mechanisms. The contribution of c-myc mRNA regulatory sequences on its translational control has been investigated individually. However, putative interactions have not been addressed so far. The effect of these interactions upon the translatability of monocistronic and bicistronic chimaeric mRNAs, carrying combinations of the c-myc mRNA 5′-untranlated region (UTR), 3′-UTR, and coding region instability element (CRD) was investigated on this study. The presence of the 5′-UTR induced an increase in translatability of 50%. The presence of the CRD element, when in frame, reduced translatability by approximately 50%, regardless of the expression levels of the wild type CRD- binding protein (CRD-BP/IMP1). Conversely, overexpression of a mutated CRD-BP/IMP1 (Y396F) further impeded translation of the chimaeric mRNAs carrying its cognate sequences. The presence of the c-myc 3′-UTR increased translatability by approximately 300% affecting both cap and c-myc internal ribosome entry site (IRES) mediated translation. In addition, 3′-UTR rescued the cap mediated translation in the presence of the polyadenylation inhibitor cordycepin. Furthermore, the 3′-UTR rescued cap mediated translation under metabolic stress conditions and this was enhanced in the absence of a long poly (A) tail.


2016 ◽  
Author(s):  
Emanuel Gonçalves ◽  
Zrinka Raguz ◽  
Mattia Zampieri ◽  
Omar Wagih ◽  
David Ochoa ◽  
...  

AbstractCells react to extracellular perturbations with complex and intertwined responses. Systematic identification of the regulatory mechanisms that control these responses is still a challenge and requires tailored analyses integrating different types of molecular data. Here we acquired time-resolved metabolomics measurements in yeast under salt and pheromone stimulation and developed a machine learning approach to explore regulatory associations between metabolism and signal transduction. Existing phosphoproteomics measurements under the same conditions and kinase-substrate regulatory interactions were used to estimate the enzymatic activity of signalling kinases. Our approach identified informative associations between kinases and metabolic enzymes capable of predicting metabolic changes. We extended our analysis to two studies containing transcriptomics, phosphoproteomics and metabolomics measurements across a comprehensive panel of kinases/phosphatases knockouts and time-resolved perturbations to the nitrogen metabolism, conveying a total of 143 unique conditions. Our approach accurately estimated the change in activity of transcription factors, kinases and phosphatases and these were capable of building predictive models to infer the metabolic adaptations of previously unseen conditions across different dynamic experiments. Time-resolved experiments were significantly more informative than genetic perturbations to infer metabolic adaptation. This difference may be due to the indirect nature of the associations and of general cellular states that can hinder the identification of causal relationships. This work provides a novel genome-scale integrative analysis to propose putative transcriptional and post-translational regulatory mechanisms of metabolic processes.


Author(s):  
F.J. Sjostrand

In the 1940's and 1950's electron microscopy conferences were attended with everybody interested in learning about the latest technical developments for one very obvious reason. There was the electron microscope with its outstanding performance but nobody could make very much use of it because we were lacking proper techniques to prepare biological specimens. The development of the thin sectioning technique with its perfectioning in 1952 changed the situation and systematic analysis of the structure of cells could now be pursued. Since then electron microscopists have in general become satisfied with the level of resolution at which cellular structures can be analyzed when applying this technique. There has been little interest in trying to push the limit of resolution closer to that determined by the resolving power of the electron microscope.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


2007 ◽  
Author(s):  
S. I. Soroko ◽  
S. S. Bekshaev ◽  
V. P. Rozhkov

2020 ◽  
Vol 3 (1) ◽  
pp. 58-76 ◽  
Author(s):  
Bohan Rong ◽  
Qiong Wu ◽  
Chao Sun

Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and its contribution to protection against oxidative stress in organisms including unicellular alga, animals and plants. Currently, the bio-regulatory effects of melatonin on the physiology of various peripheral tissues have drawn a great attention of scientists. Although melatonin was previously defined as a neurohormone secreted from pineal gland, recently it has been identified that virtually, every cell has the capacity to synthesize melatonin and the locally generated melatonin has multiple pathophysiological functions, including regulations of obesity and metabolic syndromes. Herein, we focus on the effects of melatonin on fat deposition in various peripheral organs/tissues. The two important regulatory mechanisms related to the topic, i.e., the improvements of circadian rhythms and antioxidative capacity will be thoroughly discussed since they are linked to several biomarkers involved in obesity and energy imbalance, including metabolism and immunity. Furthermore, several other functions of melatonin which may serve to prevent or promote obesity and energy dysmetabolism-induced pathological states are also addressed. The organs of special interest include liver, pancreas, skeletal muscle, adipose tissue and the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document