scholarly journals SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction

2021 ◽  
Vol 11 ◽  
Author(s):  
Jerzy K. Kulski ◽  
Shingo Suzuki ◽  
Takashi Shiina

The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.

1998 ◽  
Vol 274 (2) ◽  
pp. G227-G231 ◽  
Author(s):  
Richard S. Blumberg

The human major histocompatibility complex (MHC) on chromosome 6 encodes three classical class I genes: human leukocyte antigen-A (HLA-A), HLA-B, and HLA-C. These polymorphic genes encode a 43- to 45-kDa cell surface glycoprotein that, in association with the 12-kDa β2-microglobulin molecule, functions in the presentation of nine amino acid peptides to the T cell receptor of CD8-bearing T lymphocytes and killer inhibitory receptors on natural killer cells. In addition to these ubiquitously expressed polymorphic proteins, the human genome also encodes a number of nonclassical MHC class I-like, or class Ib, genes that in general encode nonpolymorphic molecules involved in a variety of specific immunologic functions. Many of these genes, including CD1, the neonatal Fc receptor for immunoglobulin G, HLA-G, the MHC class I chain-related gene A, and Hfe, are prominently displayed on epithelial cells, suggesting an important role in epithelial cell biology.


1990 ◽  
Vol 10 (1) ◽  
pp. 243-253 ◽  
Author(s):  
M J Chorney ◽  
I Sawada ◽  
G A Gillespie ◽  
R Srivastava ◽  
J Pan ◽  
...  

The human major histocompatibility complex contains approximately 20 class I genes, pseudogenes, and gene fragments. These include the genes for the three major transplantation antigens, HLA-A, HLA-B, and HLA-C, as well as a number of other genes or pseudogenes of unknown biological significance. Most of the latter have C + G-rich sequences in their 5' ends that are unmethylated in the B-lymphoblastoid cell line 3.1.0. We investigated one of these genes, HLA-H, in more detail. The gene is, overall, strongly homologous in sequence to HLA-A but differs in several potentially significant ways, including changes in conserved promoter sequences, a single-base deletion producing a translation termination codon in exon 4, and a region of sequence divergence downstream of the transcribed portion of the gene. Nevertheless, mouse L cells transfected with the gene accumulated small amounts of apparently full-length polyadenylated RNA. A portion of this RNA begins at the transcription site predicted by analogy to certain class I cDNA clones, while another portion appears to begin shortly upstream. L cells transfected with a hybrid gene containing the first three exons of HLA-H and the last five exons of HLA-B27 accumulated full-length HLA transcripts at the same level as cells transfected with an HLA-B27 gene; both levels are at least 15- to 20-fold higher than that directed by HLA-H alone. In addition, we isolated a cDNA clone for HLA-H that contains a portion of intron 3 attached to a normally spliced sequence comprising exons 4 through 8. These results suggest that low levels of translatable mRNA for the truncated class I heavy chain encoded by HLA-H are produced under physiologic circumstances and that sequences 3' of intron 3 decrease the levels of stable transcripts.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chongming Jiang ◽  
Evelien Schaafsma ◽  
Wei Hong ◽  
Yanding Zhao ◽  
Ken Zhu ◽  
...  

BackgroundNeoantigens are presented on the cancer cell surface by peptide-restricted human leukocyte antigen (HLA) proteins and can subsequently activate cognate T cells. It has been hypothesized that the observed somatic mutations in tumors are shaped by immunosurveillance.MethodsWe investigated all somatic mutations identified in The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) samples. By applying a computational algorithm, we calculated the binding affinity of the resulting neo-peptides and their corresponding wild-type peptides with the major histocompatibility complex (MHC) Class I complex. We then examined the relationship between binding affinity alterations and mutation frequency.ResultsOur results show that neoantigens derived from recurrent mutations tend to have lower binding affinities with the MHC Class I complex compared to peptides from non-recurrent mutations. Tumor samples harboring recurrent SKCM mutations exhibited lower immune infiltration levels, indicating a relatively colder immune microenvironment.ConclusionsThese results suggested that the occurrences of somatic mutations in melanoma have been shaped by immunosurveillance. Mutations that lead to neoantigens with high MHC class I binding affinity are more likely to be eliminated and thus are less likely to be present in tumors.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Austin Nguyen ◽  
Julianne K. David ◽  
Sean K. Maden ◽  
Mary A. Wood ◽  
Benjamin R. Weeder ◽  
...  

ABSTRACT Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic. IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.


Author(s):  
Jesvin Bency B. ◽  
Mary Helen P. A.

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative viral strain for the contagious pandemic respiratory illness in humans which is a public health emergency of international concern. There is a desperate need for vaccines and antiviral strategies to combat the rapid spread of SARS-CoV-2 infection.Methods: The present study based on computational methods has identified novel conserved cytotoxic T-lymphocyte epitopes as well as linear and discontinuous B-cell epitopes on the SARS-CoV-2 spike (S) protein. The predicted MHC class I and class II binding peptides were further checked for their antigenic scores, allergenicity, toxicity, digesting enzymes and mutation.Results: A total of fourteen linear B-cell epitopes where GQSKRVDFC displayed the highest antigenicity-score and sixteen highly antigenic 100% conserved T-cell epitopes including the most potential vaccine candidates MHC class-I peptide KIADYNYKL and MHC class-II peptide VVFLHVTYV were identified. Furthermore, the potential peptide QGFSALEPL with high antigenicity score attached to larger number of human leukocyte antigen alleles. Docking analyses of the allele HLA-B*5201 predicted to be immunogenic to several of the selected epitopes revealed that the peptides engaged in strong binding with the HLA-B*5201 allele.Conclusions: Collectively, this research provides novel candidates for epitope-based peptide vaccine design against SARS-CoV-2 infection.


1997 ◽  
Vol 185 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Christian Münz ◽  
Nicholas Holmes ◽  
Ashley King ◽  
Yung Wai Loke ◽  
Marco Colonna ◽  
...  

The crucial immunological function of the classical human major histocompatibility complex (MHC) class I molecules, human histocompatibility leukocyte antigen (HLA)-A, -B, and -C, is the presentation of peptides to T cells. A secondary function is the inhibition of natural killer (NK) cells, mediated by binding of class I molecules to NK receptors. In contrast, the function of the nonclassical human MHC class I molecules, HLA-E, -F, and -G, is still a mystery. The specific expression of HLA-G in placental trophoblast suggests an important role for this molecule in the immunological interaction between mother and child. The fetus, semiallograft by its genotype, escapes maternal allorecognition by downregulation of HLA-A and HLA-B molecules at this interface. It has been suggested that the maternal NK recognition of this downregulation is balanced by the expression of HLA-G, thus preventing damage to the placenta. Here, we describe the partial inhibition of NK lysis of the MHC class I negative cell line LCL721.221 upon HLA-G transfection. We present three NK lines that are inhibited via the interaction of their NKAT3 receptor with HLA-G and with HLA-Bw4 molecules. Inhibition can be blocked by the anti-NKAT3 antibody 5.133. In conclusion, NK inhibition by HLA-G via NKAT3 may contribute to the survival of the fetal semiallograft in the mother during pregnancy.


2020 ◽  
Vol 45 (5) ◽  
pp. 587-592
Author(s):  
Cigdem Kekik Cinar ◽  
Kadir Demir ◽  
Sonay Temurhan ◽  
Filiz Akyuz ◽  
Binnur Pinarbasi ◽  
...  

AbstractObjectivesWe aimed to determine Human Leukocyte Antigen (HLA)-DRB1, DQB1, and MHC Class I related chain A (MICA) genotypes in patients with ulcerative colitis.MethodsHLA-DRB1, HLA-DQB1, MICA genotyping of patient (n:85) and controls (n:100) were performed by PCR-SSO Luminex (One Lambda genotyping kit).ResultsWe found significantly higher DRB1*01 (p:0.022, OR:0.23, CI:0.06–0.8) and MICA*0002/20/55 (p:0.03, OR:0.53, CI:0.29–0.93) alleles in control group whereas DRB1*14 (p:0.04, OR:2.25, CI:1–5.08), DRB1*15 (p:<0.0001, OR:4.54, CI:2.09–9.88) and MICA*0004 (p:0.01, OR:2.84, CI:1.2–6.7) alleles were higher in patient group.ConclusionsThe present study will inform the MICA and HLA genotypes about the protective (DRB1*01, MICA*0002/20/55) or susceptible (DRB1*14, DRB1*15, MICA*0004) alleles of the disease and helps the literature on Turkish patients with ulcerative colitis.


Sign in / Sign up

Export Citation Format

Share Document