scholarly journals Integrated Bioinformatics Analysis Identifies Heat Shock Factor 2 as a Prognostic Biomarker Associated With Immune Cell Infiltration in Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Yumei Fan ◽  
Jiajie Hou ◽  
Xiaopeng Liu ◽  
Bihui Han ◽  
Yanxiu Meng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common malignancies and ranks as the second leading cause of cancer-related mortality worldwide. Heat shock factor 2 (HSF2) is a transcription factor that plays a critical role in development, particularly corticogenesis and spermatogenesis. However, studies examining the expression and prognostic value of HSF2 and its association with tumor-infiltrating immune cells in HCC are still rare. In the present study, we found that HSF2 expression was significantly upregulated in HCC tissues compared with normal liver tissues using the TCGA, ICGC, GEO, UALCAN, HCCDB and HPA databases. High HSF2 expression was associated with shorter survival of patients with HCC. Cox regression analyses and nomogram were used to evaluate the association of HSF2 expression with the prognosis of patients with HCC. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) revealed that HSF2 was associated with various signaling pathways, including the immune response. Notably, HSF2 expression was significantly correlated with the infiltration levels of different immune cells using the TIMER database and CIBERSORT algorithm. HSF2 expression also displayed a significant correlation with multiple immune marker sets in HCC tissues. Knockdown of HSF2 significantly inhibited the proliferation, migration, invasion and colony formation ability of HCC cells. In summary, we explored the clinical significance of HSF2 and provided a therapeutic basis for the early diagnosis, prognostic judgment, and immunotherapy of HCC.

2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types.Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2020 ◽  
Author(s):  
Bihui Han ◽  
Yanxiu Meng ◽  
Yumei Fan ◽  
Bing Liu ◽  
Jiajie Hou ◽  
...  

Abstract BackgroundHepatocellular carcinoma (HCC) is one of the most common malignancies and ranks as the second leading cause of cancer-related mortality worldwide. Heat shock factor 2 (HSF2) is a transcription factor that plays a critical role in development, particularly corticogenesis and spermatogenesis. However, studies on the expression and prognostic value of HSF2 and its association with tumor-infiltrating immune cells in HCC are still rare. MethodsThe TCGA, Oncomine, UALCAN, HCCDB and HPA databases were used to investigate HSF2 expression in HCC. Kaplan-Meier plotter, GEPIA and HCCDB databases were used to evaluate the association of HSF2 with the prognosis of HCC patients. Genetic alteration of HSF2 was examined by the cBioPortal database. The mechanism was investigated with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GESA), and the relationship between HSF2 expression and immune infiltration was explored through the TIMER database and CIBERSORT algorithm.Results In the present study, we found that HSF2 expression was significantly upregulated in HCC compared with normal liver tissues. High HSF2 expression was associated with poor survival in HCC patients. GO, KEGG and GESA analyses demonstrated that HSF2 was associated with various signaling pathways, including the immune response. Notably, HSF2 expression was significantly correlated with the infiltration levels of different immune cells. HSF2 expression also displayed a significant correlation with multiple immune marker sets in HCC. ConclusionsIn summary, we explored the clinical significance of HSF2 and provided a therapeutic basis for the early diagnosis, prognostic judgment, and immunotherapy of HCC.


2021 ◽  
Author(s):  
Xinyu Gu ◽  
Haibo Zhou ◽  
Qingfei Chu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
...  

Abstract Background: 5-Methylcytosine (m5C) plays essential roles in hepatocellular carcinoma (HCC), but the association between m5C regulation and immune cell infiltration in HCC has not yet been clarified.Methods: In this study, we analysed 371 patients with HCC from The Cancer Genome Atlas (TCGA) database, and the expression of 13 m5C regulators was investigated. Additionally, gene set variation analysis (GSVA), unsupervised clustering analysis, single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and immunohistochemical (IHC) staining were performed.Results: Among the 371 patients, 41 had mutations in m5C regulators, the frequency of which was 11.26%. Then, we identified three m5C modification patterns that had obvious tumour microenvironment (TME) cell infiltration characteristics. Cluster-1 had an immune rejection phenotype; Cluster-2 had an immunoinflammatory phenotype; and Cluster-3 had an immune desert phenotype. In addition, we found that DNMT1 was highly expressed in tumour tissues compared with normal tissues in a tissue microarray (TMA) and that it was positively correlated with many TME-infiltrating immune cells. High expression of the m5C regulator DNMT1 was related to a poor prognosis in patients with HCC. Furthermore, we developed three Immu-clusters that were consistent with the immune characteristics of the m5C methylation modification patterns. We also discovered differences in the levels of immune cells and expression of chemokines and cytokines among the three Immu-clusters.Conclusions: Our work revealed the association between m5C modification and immune regulators in the TME. These findings also suggest that DNMT1 has great potential as a prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Author(s):  
Lili Li ◽  
Rongrong Xie ◽  
Qichun Wei

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of mortality worldwide. N6-methyladenosine (m6A) methyltransferase, has been proved to act as an oncogene in several human cancers. However, little is known about its relationship with the long non-coding RNAs (lncRNAs) that remains elusive in HCC.Methods: We comprehensively integrated gene expression data acquired from 371 HCC and 50 normal tissues in The Cancer Genome Atlas (TCGA) database. Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and univariate regression & Kaplan-Meier (K-M) analysis was performed to identify m6A methyltransferase‑related lncRNAs that were related to overall survival (OS). m6A methyltransferase‑related lncRNA signature was constructed using the Least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Furthermore, Cox regression analysis was applied to identify independent prognostic factors in HCC. The signature was validated in an internal validation set. Finally, the correlation analysis between gene signature and immune cells infiltration was also investigated via single-sample Gene Set Enrichment Analysis (ssGSEA) and immunotherapy response was calculated through Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.Results: A total of 21 m6A methyltransferase-related lncRNAs were screened out according to Spearman correlation analysis with the immune score (|R| > 0.3, P < 0.05). We selected 3 prognostic lncRNAs to construct m6A methyltransferase-related lncRNA signature through univariate and LASSO Cox regression analyses. The univariate and multivariate Cox regression analyses demonstrated that the lncRNAs signature was a robust independent prognostic factor in OS prediction with high accuracy. The GSEA also suggested that the m6A methyltransferase-related lncRNAs were involved in the immune-related biological processes and pathways which were very well-known in the context of HCC tumorigenesis. Besides, we found that the lncRNAs signature was strikingly correlated with the tumor microenvironment (TME) immune cells infiltration and expression of critical immune checkpoints. Finally, results from the TIDE analysis revealed that the m6A methyltransferase-related lncRNAs could efficiently predict the clinical response of immunotherapy in HCC.Conclusion: Together, our study screened potential prognostic m6A methyltransferase related lncRNAs and established a novel m6A methyltransferase-based prognostic model of HCC, which not only provides new potential prognostic biomarkers and therapeutic targets but also deepens our understanding of tumor immune microenvironment status and lays a theoretical foundation for immunotherapy.


2021 ◽  
Author(s):  
Yuhao Zhang ◽  
Jiaxin Zhang ◽  
Fengxian Wei ◽  
Haodong Zhang ◽  
Dongdong Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), which carries a very bad prognosis, is a common malignant tumor worldwide. This study aim to identify a pyroptosis-related long non-coding RNA(pyLncRNA) prognostic signature in HCC by integrated bioinformatics analysis. Methods: All expression profiles of HCC were obtained from The Cancer Genome Atlas (TCGA) and pyroptosis-related genes were from the GSEA website. After identified differentially expressed pyLncRNAs, univariate Cox regression and Lasso analysis were used to identify a pyroptosis-related LncRNAs prognositic signature(py-LPS). Internal validation was used to validate the prognostic value of the py-LPS via the Kaplan-Meier(K-M) curve and receiver operating characteristic(ROC) curve. Additional, we established the nomogram and analyzed the correlation between the signature and immune immune infiltration as well as clinical treatment. Result: 7 pyLncRNAs were established the signature for HCC prognosis. K-M curves exhibited the low risk group presented a markedly longer OS than the high. Clinical subgroups analysis based age, gender, grade and stage yielded the similar results. The signature had an independent prognostic value for HCC(p<0.001). Nomogram estimated one-, three- and five-year survival were 0.777, 0.741 and 0.709. Then, gene set enrichment analysis(GSEA) demostrated significant pathways. Futhermore, we found immune cell infiltration and immunotherapy targets was associated with the signature,which could provided clinical recommendations for chemotherapy.Conclusion: In this study, a novel pyroptosis-related LncRNAs porgnostic signature of HCC, correlated with immune infiltration, could predict the survival of HCC patients and give suggestions for clinical treatment.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract BackgroundHypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aim to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.MethodsDifferentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis. Then the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. The Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature. CIBERSORT was used for estimating the fractions of immune cell types.ResultsA total of 397 hypoxia-related DEGs in HCC were detected and three genes (PDSS1, CDCA8 and SLC7A11) among them were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response. Meanwhile, the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.ConclusionsAltogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism. Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types. Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1. Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2021 ◽  
Vol 11 ◽  
Author(s):  
He Ren ◽  
Wanjing Li ◽  
Xin Liu ◽  
Shuliang Li ◽  
Hao Guo ◽  
...  

Hepatocellular carcinoma (HCC) is a common malignant tumor with relatively high malignancy and rapid disease progression. Metabolism-related genes (MRGs) are involved in the pathogenesis of HCC. This study explored potential key MRGs and their effect on T-cell immune function in the tumor immune microenvironment to provide new insight for the treatment of HCC. Of 456 differentially expressed MRGs identified from TCGA database, 21 were screened by MCODE and cytoHubba algorithms. From the key module, GAD1, SPP1, WFS1, GOT2, EHHADH, and APOA1 were selected for validation. The six MRGs were closely correlated with survival outcomes and clinicopathological characteristics in HCC. Receiver operating characteristics analysis and Kaplan-Meier plots showed that these genes had good prognostic value for HCC. Gene set enrichment analysis of the six MRGs indicated that they were associated with HCC development. TIMER and GEPIA databases revealed that WFS1 was significantly positively correlated and EHHADH was negatively correlated with tumor immune cell infiltration and immune checkpoint expression. Finally, quantificational real-time polymerase chain reaction (qRT-PCR) confirmed the expression of WFS1 and EHHADH mRNA in our own patients’ cohort samples and four HCC cell lines. Collectively, the present study identified six potential MRG biomarkers associated with the prognosis and tumor immune infiltration of HCC, thus providing new insight into the pathogenesis and treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document