scholarly journals Genome-Wide Identification and Comparative Analysis of the ASR Gene Family in the Rosaceae and Expression Analysis of PbrASRs During Fruit Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Biying Zhao ◽  
Xianrong Yi ◽  
Xin Qiao ◽  
Yan Tang ◽  
Zhimei Xu ◽  
...  

The members of the Abscisic Acid (ABA) Stress and Ripening gene family (ASR) encode a class of plant-specific proteins with ABA/WDS domains that play important roles in fruit ripening, abiotic stress tolerance and biotic stress resistance in plants. The ASR gene family has been widely investigated in the monocotyledons and dicotyledons. Although the genome sequence is already available for eight fruit species of the Rosaceae, there is far less information about the evolutionary characteristics and the function of the ASR genes in the Rosaceae than in other plant families. Twenty-seven ASR genes were identified from species in the Rosaceae and divided into four subfamilies (I, II, III, and IV) on the basis of structural characteristics and phylogenetic analysis. Purifying selection was the primary force for ASR family gene evolution in eight Rosaceae species. qPCR experiments showed that the expression pattern of PbrASR genes from Pyrus bretschneideri was organ-specific, being mainly expressed in flower, fruit, leaf, and root. During fruit development, the mRNA abundance levels of different PbrASR genes were either down- or up-regulated, and were also induced by exogenous ABA. Furthermore, subcellular localization results showed that PbrASR proteins were mainly located in the nucleus and cytoplasm. These results provide a theoretical foundation for investigation of the evolution, expression, and functions of the ASR gene family in commercial fruit species of the Rosaceae family.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guodong Chen ◽  
Jizhong Wang ◽  
Xin Qiao ◽  
Cong Jin ◽  
Weike Duan ◽  
...  

Abstract Background The members of the sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family are specific serine/threonine protein kinases in plants that play important roles in stress signal transduction and adaptation. Because of their positive regulatory roles in response to adverse conditions, the genes encoding thes proteins are considered potential candidates for breeding of plants for disease resistance and genetic improvement. However, there is far less information about this kinase family, and the function of these genes has not been explored in Rosaceae. Results A genome-wide survey and analysis of the genes encoding members of the SnRK2 family were performed in pear (Pyrus bretschneideri) and seven other Rosaceae species. A total of 71 SnRK2 genes were identified from the eight Rosaceae species and classified into three subgroups based on phylogenetic analysis and structural characteristics. Purifying selection played a crucial role in the evolution of SnRK2 genes, and whole-genome duplication and dispersed duplication were the primary forces underlying the characteristics of the SnRK2 gene family in Rosaceae. Transcriptome data and qRT-PCR assay results revealed that the distribution of PbrSnRK2s was very extensive, including across the roots, leaves, pollen, styles, and flowers, although most of them were mainly expressed in leaves. In addition, under stress conditions, the transcript levels of some of the genes were upregulated in leaves in response to ABA treatment. Conclusions This study provides useful information and a theoretical introduction for the study of the evolution, expression, and functions of the SnRK2 gene family in plants.


2020 ◽  
Author(s):  
Guodong Chen ◽  
Jizhong Wang ◽  
Xin Qiao ◽  
Cong Jin ◽  
Weike Duan ◽  
...  

Abstract Background: The members of the sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family are specific serine/threonine protein kinases in plants that play important roles in stress signal transduction and adaptation. Because of their positive regulatory roles in response to adverse conditions, the genes encoding thes proteins are considered potential candidates for breeding of plants for disease resistance and genetic improvement. However, there is far less information about this kinase family, and the function of these genes has not been explored in Rosaceae. Results: A genome-wide survey and analysis of the genes encoding members of the SnRK2 family were performed in pear ( Pyrus bretschneideri ) and seven other Rosaceae species. A total of 71 SnRK2 genes were identified from the eight Rosaceae species and classified into three subgroups based on phylogenetic analysis and structural characteristics. Purifying selection played a crucial role in the evolution of SnRK2 genes, and whole-genome duplication and dispersed duplication were the primary forces underlying the characteristics of the SnRK2 gene family in Rosaceae. Transcriptome data and qRT-PCR assay results revealed that the distribution of PbrSnRK2s was very extensive, including across the roots, leaves, pollen, styles, and flowers, although most of them were mainly expressed in leaves. In addition, under stress conditions, the transcript levels of some of the genes were upregulated in leaves in response to ABA treatment. Conclusions: This study provides useful information and a theoretical introduction for the study of the evolution, expression, and functions of the SnRK2 gene family in plants.


2020 ◽  
Author(s):  
Guodong Chen ◽  
Jizhong Wang ◽  
Xin Qiao ◽  
Cong Jin ◽  
Weike Duan ◽  
...  

Abstract Background The members of the sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family are specific serine/threonine protein kinases in plants, which play important roles in stress signal transduction and adaptation. Because of these positive regulatory roles in response to adversity, the genes encoding them are considered potential candidates for breeding of plants for disease resistance and genetic improvement. However, there is far less information about this kinase family and the function of these genes has not been explored in Rosaceae. Results A genome-wide survey and analysis of the genes encoding members of the SnRK2 family were performed in pear (Pyrus bretschneideri) and seven other Rosaceae species. A total of 71 SnRK2 genes were identified from the eight Rosaceae species and classified into three subgroups based on phylogenetic analysis and structural characteristics. Purifying selection played a crucial role in the evolution of SnRK2 genes, and whole-genome duplication and dispersed duplication were the main forces underlying the characteristics of the SnRK2 gene family in Rosaceae. Transcriptome data and qRT-PCR assays revealed that the distribution of PbrSnRK2s was very extensive including across the roots, leaves, pollen, styles, and flowers, although most of them were mainly expressed in leaves. In addition, under stress conditions, the transcript levels of some of the genes were upregulated in leaves in response to ABA treatments. Conclusions This study provides useful information and a theoretical introduction for the study of the evolution, expression, and functions of the SnRK2 gene family in plants.


2019 ◽  
Author(s):  
Shaoling Zhang ◽  
Weiwei Zeng ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Chunxin Liu ◽  
...  

Abstract Background Alcohol dehydrogenases (ADHs) are essential to plant growth and the formation of aromatic compounds in fruits. However, the evolutionary history and characteristics of ADH gene expression remain largely unclear in Chinese white pear ( Pyrus bretschneideri ) and other fruit species from the family Rosaceae.Results In this study, 464 ADH genes were identified in eight Rosaceae fruit species and 68 of the genes were from pear. Based on the analyses of phylogeny and conserved motifs, the pear ADH genes were classified into four subgroups (I, II, III, and IV). The chromosomal distribution of the genes was found to be uneven and numerous clusters of physically linked ADH genes were detected. Frequent single-gene duplication events were found to have contributed to the formation of ADH gene clusters and the expansion of the ADH gene family in these eight Rosaceae species. Purifying selection was the major force in ADH gene evolution. The younger genes derived from tandem and proximal duplications had evolved faster than those that derived from other types of duplication. RNA-sequencing and quantitative-real time-PCR analysis revealed that the expression levels of three ADH genes were closely correlated with the content of aromatic compounds that are found during fruit development.Conclusion Comprehensive analyses were conducted in eight Rosaceae species and 464 ADH genes were identified. The results of this study provide new insights into the evolution and expression characteristics of ADH family genes in pear and other Rosaceae species.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shujuan Tian ◽  
Jiao Jiang ◽  
Guo-qi Xu ◽  
Tan Wang ◽  
Qiyan Liu ◽  
...  

Abstract Background Kinesin (KIN) as a motor protein is a versatile nano-machine and involved in diverse essential processes in plant growth and development. However, the kinesin gene family has not been identified in watermelon, a valued and nutritious fruit, and yet their functions have not been characterized. Especially, their involvement in early fruit development, which directly determines the size, shape, yield and quality of the watermelon fruit, remains unclear. Results In this study, we performed a whole-genome investigation and comprehensive analysis of kinesin genes in C. lanatus. In total, 48 kinesins were identified and categorized into 10 kinesin subfamilies groups based on phylogenetic analysis. Their uneven distribution on 11 chromosomes was revealed by distribution analysis. Conserved motif analysis showed that the ATP-binding motif of kinesins was conserved within all subfamilies, but not the microtubule-binding motif. 10 segmental duplication pairs genes were detected by the syntenic and phylogenetic approaches, which showed the expansion of the kinesin gene family in C. lanatus genome during evolution. Moreover, 5 ClKINs genes are specifically and abundantly expressed in early fruit developmental stages according to comprehensive expression profile analysis, implying their critical regulatory roles during early fruit development. Our data also demonstrated that the majority of kinesin genes were responsive to plant hormones, revealing their potential involvement in the signaling pathways of plant hormones. Conclusions Kinesin gene family in watermelon was comprehensively analyzed in this study, which establishes a foundation for further functional investigation of C. lanatus kinesin genes and provides novel insights into their biological functions. In addition, these results also provide useful information for understanding the relationship between plant hormone and kinesin genes in C. lanatus.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yushan Liu ◽  
Yizhou Wang ◽  
Jiabo Pei ◽  
Yadong Li ◽  
Haiyue Sun

Abstract Background Caffeic acid O-methyltransferases (COMTs) play an important role in the diversification of natural products, especially in the phenylalanine metabolic pathway of plant. The content of COMT genes in blueberry and relationship between their expression patterns and the lignin content during fruit development have not clearly investigated by now. Results Ninety-two VcCOMTs were identified in Vaccinium corymbosum. According to phylogenetic analyses, the 92 VcCOMTs were divided into 2 groups. The gene structure and conserved motifs within groups were similar which supported the reliability of the phylogenetic structure groupings. Dispersed duplication (DSD) and whole-genome duplication (WGD) were determined to be the major forces in VcCOMTs evolution. The results showed that the results of qRT-PCR and lignin content for 22 VcCOMTs, VcCOMT40 and VcCOMT92 were related to lignin content at different stages of fruit development of blueberry. Conclusion We identified COMT gene family in blueberry, and performed comparative analyses of the phylogenetic relationships in the 15 species of land plant, and gene duplication patterns of COMT genes in 5 of the 15 species. We found 2 VcCOMTs were highly expressed and their relative contents were similar to the variation trend of lignin content during the development of blueberry fruit. These results provide a clue for further study on the roles of VcCOMTs in the development of blueberry fruit and could promisingly be foundations for breeding blueberry clutivals with higher fruit firmness and longer shelf life.


Sign in / Sign up

Export Citation Format

Share Document