scholarly journals Chloroplast and Nuclear Genetic Diversity Explain the Limited Distribution of Endangered and Endemic Thuja sutchuenensis in China

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi Yao ◽  
Xinyu Wang ◽  
Kailai Wang ◽  
Wenhao Yu ◽  
Purong Deng ◽  
...  

Narrow-ranged species face challenges from natural disasters and human activities, and to address why species distributes only in a limited region is of great significance. Here we investigated the genetic diversity, gene flow, and genetic differentiation in six wild and three cultivated populations of Thuja sutchuenensis, a species that survive only in the Daba mountain chain, using chloroplast simple sequence repeats (cpSSR) and nuclear restriction site-associated DNA sequencing (nRAD-seq). Wild T. sutchuenensis populations were from a common ancestral population at 203 ka, indicating they reached the Daba mountain chain before the start of population contraction at the Last Interglacial (LIG, ∼120–140 ka). T. sutchuenensis populations showed relatively high chloroplast but low nuclear genetic diversity. The genetic differentiation of nRAD-seq in any pairwise comparisons were low, while the cpSSR genetic differentiation values varied with pairwise comparisons of populations. High gene flow and low genetic differentiation resulted in a weak isolation-by-distance effect. The genetic diversity and differentiation of T. sutchuenensis explained its survival in the Daba mountain chain, while its narrow ecological niche from the relatively isolated and unique environment in the “refugia” limited its distribution.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenhao Yu ◽  
Baofeng Wu ◽  
Xinyu Wang ◽  
Zhi Yao ◽  
Yonghua Li ◽  
...  

Abstract Spatial scale partly explains the differentiated effects of habitat fragmentation on plant biodiversity, but the mechanisms remain unclear. To investigate the effects of habitat fragmentation on genetic diversity at different scales, we sampled Actinidia chinensis Planch. at broad and fine scales, China. The broad-scale sampling included five mountain populations and one oceanic island population (Zhoushan Archipelago), and the fine-scale sampling covered 11 lake islands and three neighboring land populations in Thousand-Island Lake (TIL). These populations were genotyped at 30 microsatellite loci, and genetic diversity, gene flow, and genetic differentiation were evaluated. Genetic differentiation was positively related to geographical distance at the broad scale, indicating an isolation-by-distance effect of habitat fragmentation on genetic diversity. The oceanic population differed from the mainland populations and experienced recent bottleneck events, but it showed high gene flow with low genetic differentiation from a mountain population connected by the Yangtze River. At the fine scale, no negative genetic effects of habitat fragmentation were found because seed dispersal with water facilitates gene flow between islands. The population size of A. chinensis was positively correlated with the area of TIL islands, supporting island biogeography theory, but no correlation was found between genetic diversity and island area. Our results highlight the scale-dependent effects of habitat fragmentation on genetic diversity and the importance of connectivity between island-like isolated habitats at both the broad and fine scales.


2017 ◽  
Vol 65 (4) ◽  
pp. 1322
Author(s):  
Bárbara Cruz Salazar ◽  
Consuelo Lorenzo ◽  
Eduardo Espinoza Medinilla ◽  
Sergio López

Lepus flavigularis, is an endemic and endangered species, with only four populations inhabiting Oaxaca, México: Montecillo Santa Cruz, Aguachil, San Francisco del Mar Viejo and Santa María del Mar. Nevertheless, human activities like poaching and land use changes, and the low genetic diversity detected with mitochondrial DNA and allozymes in previous studies, have supported the urgent need of management strategies for this species, and suggest the definition of management units. For this, it is necessary to study the genetic structure with nuclear genes, due to their inheritance and high polymorphism, therefore, the objective of this study was to examine the variation and genetic structure of L. flavigularis using nuclear microsatellites. We sampled four populations of L. flavigularis and a total of 67 jackrabbits were captured by night sampling during the period of 2001 to 2006. We obtained the genomic DNA by the phenol-chloroform-isoamyl alcohol method. To obtain the diversity and genetic structure, seven microsatellites were amplified using the Polymerase Chain Reaction (PCR); the amplifications were visualized through electrophoresis with 10 % polyacrylamide gels, dyed with ethidium bromide. Genetic diversity was determined using the software GenAlEx v. 6.4, and genetic structure was obtained with ARLEQUIN v. 3.1; null alleles were evaluated using the program Micro-Checker v.2.2.2. Additionally, a Bayesian analysis was performed with software STRUCTURE v. 2.2.3., and the isolation by distance (IBD) was studied using the program PASSAGE v.2.0.11.6. Our results showed that the genetic variation found was low (HO = 0.30, HE = 0.24) when compared to other jackrabbit species. Fixed alleles and moderate levels of genetic differentiation (FST = 0.18, P = 0.001) were detected among populations, indicating the effect of the genetic drift and limited gene flow. Bayesian clustering analysis revealed two groups: (1) jackrabbits from Montecillo Santa Cruz, and (2) individuals living in Aguachil, San Francisco del Mar Viejo and Santa María del Mar. No evidence was found of isolation by distance. It is possible that the geographic barriers present between populations (e.g. lagoons, human settlements), rather than the geographical distance between them, may explain the observed genetic structure. The inbreeding coefficient was negative (FIS = -0.27, P = 0.03), indicating genetic sub-structure in populations. We suggest two management units based on the genetically closer populations, which will help define precise conservation actions in L. flavigularis. This research is the basis for defining translocation of individuals between populations, nevertheless, a more extensive future study, with specific molecular markers for L. flavigularis, is required. In addition, it is necessary to analyze the barriers that limit the gene flow, since it is urgent to reduce the genetic differentiation between populations and increase the genetic diversity of this species. 


Crustaceana ◽  
2017 ◽  
Vol 90 (7-10) ◽  
pp. 845-864
Author(s):  
Raquel C. Buranelli ◽  
Fernando L. Mantelatto

Population genetic studies on marine taxa, specifically in the field of phylogeography, have revealed distinct levels of genetic differentiation in widely distributed species, even though they present long planktonic larval development. A set of factors have been identified as acting on gene flow between marine populations, including physical or physiological barriers, isolation by distance, larval behaviour, and geological and demographic events. In this way, the aim of this study was to analyse the genetic variability among populations of the crab speciesSesarma rectumRandall, 1840 along the western Atlantic in order to check the levels of genetic diversity and differentiation among populations. To achieve this purpose, mtDNA cytochrome-coxidase subunit I (COI) (DNA-barcode marker) data were used to compute a haplotype network and a Bayesian analysis for genetic differentiation, to calculate an Analysis of Molecular Variance (AMOVA), and haplotype and nucleotide diversities. Neutrality tests (Tajima’sDand Fu’s ) were accessed, as well as pairwise mismatch distribution under the sudden expansion model. We found sharing of haplotypes among populations ofS. rectumalong its range of distribution and no significant indication for restricted gene flow between populations separately over 6000 km, supporting the hypothesis of a high dispersive capacity, and/or the absence of strong selective gradients along the distribution. Nevertheless, some results indicated population structure suggesting the presence of two genetic sources (i.e., groups or lineages), probably interpreted as a result of a very recent bottleneck effect due to habitat losses, followed by the beginning of a population expansion.


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


2019 ◽  
Vol 190 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kin Onn Chan ◽  
Rafe M Brown

Abstract The interplay between environmental attributes and evolutionary processes can provide valuable insights into how biodiversity is generated, partitioned and distributed. This study investigates the role of spatial, environmental and historical factors that could potentially drive diversification and shape genetic variation in Malaysian torrent frogs. Torrent frogs are ecologically conserved, and we hypothesize that this could impose tight constraints on dispersal routes, gene flow and consequently genetic structure. Moreover, levels of gene flow were shown to vary among populations from separate mountain ranges, indicating that genetic differentiation could be influenced by landscape features. Using genome-wide single nucleotide polymorphisms, in conjunction with landscape variables derived from Geographic Information Systems, we performed distance-based redundancy analyses and variance partitioning to disentangle the effects of isolation-by-distance (IBD), isolation-by-resistance (IBR) and isolation-by-colonization (IBC). Our results demonstrated that IBR contributed minimally to genetic variation. Intraspecific population structure can be largely attributed to IBD, whereas interspecific diversification was primarily driven by IBC. We also detected two distinct population bottlenecks, indicating that speciation events were likely driven by vicariance or founder events.


2013 ◽  
Vol 45 (6) ◽  
pp. 799-813 ◽  
Author(s):  
Kyle M. FONTAINE ◽  
Elfie STOCKER-WÖRGÖTTER ◽  
Tom BOOTH ◽  
Michele D. PIERCEY-NORMORE

AbstractDermatocarpon luridum is a subaquatic lichen which is distributed within temperate climatic zones around the world. It colonizes rock substrata along the shoreline of lakes and rivers of watersheds that regularly experience water level fluctuations. The mycobiont produces perithecia with small, simple spores that are thought to be wind dispersed. The photobiont, Diplosphaera chodatii, occurs both free-living and lichenized but little is known about its distribution and dispersal. The goal of this study was to compare the population structure of the photobiont from lakes and rivers in central North America with those of Europe. Specimens were collected in Manitoba, Canada and Austria. Population structure of the algal symbiont was assessed using the internal transcribed spacer (ITS) of ribosomal DNA (rDNA) and actin gene sequences. Results showed that genetic diversity and gene flow was high within local populations, but gene flow was low between continental populations. Low levels of gene flow between the most distant populations support the isolation-by-distance theory. The photobiont on both continents is also reported to be the photobiont for other lichen species contributing to photobiont availability for D. luridum.


2006 ◽  
Vol 16 (2) ◽  
pp. 113-129 ◽  
Author(s):  
SHIGEKI ASAI ◽  
YOSHIHIRO YAMAMOTO ◽  
SATOSHI YAMAGISHI

The Japanese subspecies of Hodgson's Hawk-eagle, Spizaetus nipalensis orientalis, is considered threatened and has been designated as Endangered by the Japanese government. We determined the complete mitochondrial DNA (mtDNA) sequence of this species and designed a primer set to amplify a highly variable region of mtDNA, part of the control region (CR), based on this complete sequence. Using the primers, we amplified the CR and then determined the haplotypes of 178 samples collected at different sites in Japan. A nested cladistic analysis indicated that gene flow within some clades was restricted. The inference key implied that isolation by distance had caused the restriction of gene flow. Moreover, the ranges of the clades in which restricted gene flow was detected overlapped with the ranges of other clades. These results suggest that there is no fragmental population of Hodgson's Hawk-eagle in Japan and that this species has dispersed within short distances, at least in some lineages. Genetic diversity was high in comparison with other species. Therefore, at least in terms of genetic diversity, the Japanese population of Hodgson's Hawk-eagle is probably not in a critical situation.


2020 ◽  
Author(s):  
Mayara Delagnelo Medeiros ◽  
Daniel Galiano ◽  
Bruno Busnello Kubiak ◽  
Paula Angélica Roratto ◽  
Thales Renato Ochotorena de Freitas

Abstract Endemic, small range species are susceptible to environmental changes and landscape modification. Understanding genetic diversity and distributional patterns is important for implementation of effective conservation measures. In this context, genetic diversity was evaluated to update the conservation status of an endemic tuco-tuco, Ctenomys ibicuiensis. Phylogeographic and population genetic analyses of mitochondrial DNA and microsatellite loci were carried out using 46 individuals sampled across the species’ distribution. Ctenomys ibicuiensis presented moderate to high genetic diversity and highly structured populations with low levels of gene flow and isolation by distance. Anthropogenic landscape changes threaten this restricted-range tuco-tuco. Considering its limited geographic distribution and highly structured populations with low gene flow, we consider C. ibicuiensis to be at significant risk of extinction.


Sign in / Sign up

Export Citation Format

Share Document