scholarly journals 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Vittoria Sbrana ◽  
Riccardo Pinos ◽  
Federica Barbaglio ◽  
Davide Ribezzi ◽  
Fiorella Scagnoli ◽  
...  

Chronic Lymphocytic Leukemia (CLL) represents the most common leukemia in the western world and remains incurable. Leukemic cells organize and interact in the lymphoid tissues, however what actually occurs in these sites has not been fully elucidated yet. Studying primary CLL cells in vitro is very challenging due to their short survival in culture and also to the fact that traditional two-dimensional in vitro models lack cellular and spatial complexity present in vivo. Based on these considerations, we exploited for the first time three-dimensional (3D) bioprinting to advance in vitro models for CLL. This technology allowed us to print CLL cells (both primary cells and cell lines) mixed with the appropriate, deeply characterized, hydrogel to generate a scaffold containing the cells, thus avoiding the direct cell seeding onto a precast 3D scaffold and paving the way to more complex models. Using this system, we were able to efficiently 3D bioprint leukemic cells and improve their viability in vitro that could be maintained up to 28 days. We monitored over time CLL cells viability, phenotype and gene expression, thus establishing a reproducible long-term 3D culture model for leukemia. Through RNA sequencing (RNAseq) analysis, we observed a consistent difference in gene expression profile between 2D and 3D samples, indicating a different behavior of the cells in the two different culture settings. In particular, we identified pathways upregulated in 3D, at both day 7 and 14, associated with immunoglobulins production, pro-inflammatory molecules expression, activation of cytokines/chemokines and cell-cell adhesion pathways, paralleled by a decreased production of proteins involved in DNA replication and cell division, suggesting a strong adaptation of the cells in the 3D culture. Thanks to this innovative approach, we developed a new tool that may help to better mimic the physiological 3D in vivo settings of leukemic cells as well as of immune cells in broader terms. This will allow for a more reliable study of the molecular and cellular interactions occurring in normal and neoplastic conditions in vivo, and could also be exploited for clinical purposes to test individual responses to different drugs.

2020 ◽  
Vol 10 ◽  
Author(s):  
Cristina Scielzo ◽  
Paolo Ghia

Over the last decade, the active role of the microenvironment in the pathogenesis, development and drug resistance of B cell malignancies has been clearly established. It is known that the tissue microenvironment promotes proliferation and drug resistance of leukemic cells suggesting that successful treatments of B cell malignancies must target the leukemic cells within these compartments. However, the cross-talk occurring between cancer cells and the tissue microenvironment still needs to be fully elucidated. In solid tumors, this lack of knowledge has led to the development of new and more complex in vitro models able to successfully mimic the in vivo settings, while only a few simplified models are available for haematological cancers, commonly relying only on the co-culture with stabilized stromal cells and/or the addition of limited cocktails of cytokines. Here, we will review the known cellular and molecular interactions occurring between monoclonal B lymphocytes and their tissue microenvironment and the current literature describing innovative in vitro models developed in particular to study chronic lymphocytic leukemia (CLL). We will also elaborate on the possibility to further improve such systems based on the current knowledge of the key molecules/signals present in the microenvironment. In particular, we think that future models should be developed as 3D culture systems with a higher level of cellular and molecular complexity, to replicate microenvironmental-induced signaling. We believe that innovative 3D-models may therefore improve the knowledge on pathogenic mechanisms leading to the dissemination and homing of leukemia cells and consequently the identification of therapeutic targets.


2018 ◽  
Vol 132 (9) ◽  
pp. 959-983 ◽  
Author(s):  
Karlhans Fru Che ◽  
Ellen Tufvesson ◽  
Sara Tengvall ◽  
Elisa Lappi-Blanco ◽  
Riitta Kaarteenaho ◽  
...  

Long-term tobacco smokers with chronic obstructive pulmonary disease (COPD) or chronic bronchitis display an excessive accumulation of neutrophils in the airways; an inflammation that responds poorly to established therapy. Thus, there is a need to identify new molecular targets for the development of effective therapy. Here, we hypothesized that the neutrophil-mobilizing cytokine interleukin (IL)-26 (IL-26) is involved in airway inflammation amongst long-term tobacco smokers with or without COPD, chronic bronchitis or colonization by pathogenic bacteria. By analyzing bronchoalveolar lavage (BAL), bronchail wash (BW) and induced sputum (IS) samples, we found increased extracellular IL-26 protein in the airways of long-term smokers in vivo without further increase amongst those with clinically stable COPD. In human alveolar macrophages (AM) in vitro, the exposure to water-soluble tobacco smoke components (WTC) enhanced IL-26 gene and protein. In this cell model, the same exposure increased gene expression of the IL-26 receptor complex (IL10R2 and IL20R1) and nuclear factor κ B (NF-κB); a proven regulator of IL-26 production. In the same cell model, recombinant human IL-26 in vitro caused a concentration-dependent increase in the gene expression of NF-κB and several pro-inflammatory cytokines. In the long-term smokers, we also observed that extracellular IL-26 protein in BAL samples correlates with measures of lung function, tobacco load, and several markers of neutrophil accumulation. Extracellular IL-26 was further increased in long-term smokers with exacerbations of COPD (IS samples), with chronic bronchitis (BAL samples ) or with colonization by pathogenic bacteria (IS and BW samples). Thus, IL-26 in the airways emerges as a promising target for improving the understanding of the pathogenic mechanisms behind several pulmonary morbidities in long-term tobacco smokers.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 190-197 ◽  
Author(s):  
U Duhrsen ◽  
D Metcalf

Abstract After intravenous (IV) injection with factor-dependent FDC-P1 cells, irradiated DBA/2 and BALB/c mice developed transplantable leukemias owing to neoplastic transformation of the injected cells in vivo. Increasing the radiation dose shortened the preleukemic latent period, and in female mice the frequency of leukemia development was higher and the latent period shorter than in male mice. In the preleukemic period, the injected FDC-P1 cells rapidly increased in number in hematopoietic organs of irradiated animals, reaching peak levels 3 to 5 weeks after injection; factor-independent transformed cells were not detected before day 45. In unirradiated animals, these events were delayed by several weeks, and long-term survivors did not harbor detectable FDC-P1 cells. FDC-P1 cells sampled from preleukemic mice frequently showed atypical colony formation and reduced cloning efficiency in vitro, suggesting the occurrence of a distinct preleukemic change. U16.6 cells produced leukemia only in irradiated recipients, and the leukemic cells usually remained factor dependent. The two contrasting models should be of value in further analyzing the mechanisms underlying radiation- induced leukemias.


Blood ◽  
1965 ◽  
Vol 26 (2) ◽  
pp. 121-132 ◽  
Author(s):  
JOOST J. OPPENHEIM ◽  
JACQUELINE WHANG ◽  
EMIL FREI

Abstract The lymphocyte transformation response of 17 chronic lymphocytic leukemia patients when tested in the short-term tissue culture with PHA-M, and PPD was found to be significantly decreased when compared to normal subjects. Serum factors were not found to be responsible for this cellular hyporesponsiveness. The proportions of immunoresponsive lymphocytes found in the patients’ peripheral circulation decreased as their white blood cell count increased. The transformation response to PHA-M was generally better than to PPD. Neither the PPD negative patients nor the normal PPD negative subjects’ cells responded to PPD stimulation in vitro. Monocytes usually would phagocytize particles added to the cultures and could thus be distinguished from the nonphagocytic proliferating lymphocytes which were the only cells that incorporated thymidine H3. Radioautographs of tritiated thymidine also revealed the rate of PPD lymphocyte transformation to be slower than with PHA-M. There were no significant differences in the proportions or the degree of leukemic and normal transformed lymphocyte labeling with tritiated thymidine. Cytogenetic studies revealed that the patients’ mitotic indices both in vivo and in vitro were markedly depressed. The modal chromosome number was 46 in each patient, and no cytogenetic abnormalities other than those due to exposure to radiation were found.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 463-467 ◽  
Author(s):  
F Praz ◽  
G Karsenty ◽  
JL Binet ◽  
P Lesavre

Abstract Using affinity-purified 125I-F(ab')2 anti-human C3, we have investigated the ability of various leukemic cells to activate complement. Lymphocytes from patients with chronic lymphocytic leukemia (CLL) activated the alternative pathway, but cells from patients with other forms of leukemia or normal lymphocytes did not do so. The amount of C3 deposited on the CLL cells was significantly higher in patients with organomegaly (i.e., splenomegaly and/or hepatomegaly). Activation of complement by CLL cells as assessed by C3 deposition on the membrane occurred both in vivo and in vitro and was not related to the N- acetylneuraminic acid content of the membrane.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 356-356 ◽  
Author(s):  
Yair Herishanu ◽  
Berengere Vire ◽  
Delong Liu ◽  
Federica Gibellini ◽  
Gerald E Marti ◽  
...  

Abstract The host microenvironment is important for proliferation and survival of leukemic cells in chronic lymphocytic leukemia (CLL). Numerous molecules, signaling pathways and cell types have been reported to enhance CLL cell survival. To date, most reports on such interactions are derived from in-vitro studies, where each study focused on a specific ligand/receptor interaction or candidate pathway. Here, we adopted a more global approach to evaluate in-vivo effects of the microenvironment on leukemic cell biology. CLL cells from 15 patients were obtained on the same day from 3 different compartments: peripheral blood (PB), bone marrow (BM) and lymph node (LN), from which a single cell suspension was prepared. Tumor cells from all three compartments were purified by CD19 selection to purity >98%. Patients were assigned to prognostic subtypes based on immunoglobulin sequencing (Ig) and ZAP70 expression: 10 patients had the more progressive subtype (Ig-unmutated, ZAP70+) and 5 patients belonged to the more indolent subtype. Cells were analyzed for surface markers by flow cytometry and by gene expression profiling on Affymetrix HG U133 Plus 2.0 arrays. By flow cytometry, CLL cells in LN expressed higher levels of activation markers including CD69 and CD38 compared to CLL cells in PB (% CD19+/69+; 71 ±27 vs. 35 ±28, p<0.001 and % CD19+/CD38+; 33 ±28 vs. 20±19, p<0.001, respectively). The expression of activation markers in BM derived cells was less consistent and did not reach statistically significant differences. We therefore focused our analysis on a comparison between LN and PB derived cells. First, we confirmed that the expression of a diagnostic CLL gene expression signature established previously for PB derived cells (Klein et al, 2001) was equally present in leukemic cells derived from all three compartments. We then identified a set of about 275 genes that were differentially expressed between LN resident and circulating tumor cells, most of which were up-regulated (fold change >2, FDR <0.2). A large number of these genes encode proteins important for cell cycle control and proliferation: different cyclins, PCNA, Ki67, TOP2A and MYC. We also detected a significant increase in the expression of NF-κB target genes in LN resident tumor cells, including CD83, CD69, JunB, Cyclin D2, GADD45B, CCL3, CCL4 and others. Consistent with activation of the NF-κB pathway in LN, IκB-beta protein levels in tumor cells from LN were lower than levels in matching PB cells. Next we identified genes differentially expressed between CLL subtypes based on Ig-mutation status separately for each of the 3 compartments. Interestingly, these subtype identifying gene sets were only partially overlapping. In Ig-unmutated, ZAP70+ cells several genes were more strongly regulated by the microenvironment then in Ig-mutated, ZAP70 negative cells. Among these genes is LPL, which has been reported to distinguish the CLL subtypes, and other genes induced by B-cell receptor (BCR) signaling. Using in-vitro IgM activation, we show that these genes are indeed induced by BCR stimulation but not by CD40 ligation and that their induction is confined to ZAP70+ CLL cells. In conclusion: interactions between CLL cells and elements of the microenvironment in LN induce cell proliferation and NF-κB activation. The preferential upregulation of BCR regulated genes in ZAP70+ CLL demonstrates a more efficient in-vivo response of ZAP-70+ cells to BCR stimulation. Our results highlight the importance of NFκ κB and BCR signaling in CLL and provide a rationale to focus treatment approaches on these central pathways.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2360-2360
Author(s):  
Agata A Filip ◽  
Dorota Koczkodaj ◽  
Tomasz Kubiatowski ◽  
Ewa Wasik-Szczepanek ◽  
Anna Dmoszynska

Abstract Abstract 2360 Poster Board II-337 Introduction: Despite their longevity in vivo, CLL lymphocytes die rapidly when put to in vitro cultures, what proves that the resistance to apoptosis is not an intrinsic feature of leukemic cells, but depends on environmental signals. Recently it was shown that mononuclear cells from peripheral blood of CLL patients differentiate in vitro into large, adherent cells that grow in close contact with CLL lymphocytes. They were termed “nurselike cells” (NLCs), because they support leukemic lymphocyte survival in culture. The presence of the cells morphologically and phenotypically similar to NLCs was demonstrated in peripheral lymphatic organs of CLL patients. It may suggest their role in CLL lymphocytes protection in vivo and, as a consequence, point the new target in CLL treatment. Patients and Methods: The study included the group of 65 previously untreated CLL patients, 24 women and 41 men, aged from 36 to 86 yrs. 12 patients (18%) were diagnosed with stage 0 according to Rai, 15 patients (23%) with stage I, 30 patients (46%) with stage II, 5 patients (8%) with stage III and 3 patients (5%) with stage IV. Peripheral blood lymphocytes ex vivo were examined for CD14, CD38, BCL2 and ZAP70 expression by flow cytometry and for BCL2, SURVIVIN and ZAP70 gene expression by RT-PCR. TP53 gene status was assessed by FISH. Lymphocytes of 20 patients were assayed for apoptosis-related gene expression by means of cDNA macroarrays (Clontech). To generate NLCs, PB leukemic cells were cultured in vitro for 14 days on standard medium (RPMI 1640 with L-glutamine, 15% FCS, antibiotics/antimycotics; cell density 3 × 106/ml) and the outgrowth and number of NLCs was assessed in relation to clinical and hematological parameters. NLCs were identified morphologically and by CD31/VIMENTIN protein expression. Results: In 58 cases (89%) the outgrowth of NLCs was observed, while their number differed in cultures of the cells of different patients: in 49 cultures (84.5%) there were over 20 NLCs/mm2 (up to 52 NLCs/mm2), and in 9 cases (15.5%) less than 20 NLCs/mm2. Positive correlation was shown between NLC number and B2M serum level (p=0.044) and absolute monocyte count (p=0.019). Significantly higher NLC number was observed in case of patients with higher CD14+ cell number (p<0.0001) and higher SURVIVIN gene expression assessed by RT-PCR (p<0.0001) and macroarrays (p=0.013). We found no statistically significant relation of NLCs number and: the Rai stage of the disease, WBC, lymphocyte count, LDH serum level, BCL2, CD38 and ZAP70 expression and TP53 gene status. During the follow-up period of 6 years we observed the tendency for longer overall survival in patients that produce less than 20 NLCs/mm2 (fig. 1), but it was not statistically significant. Conclusions: The number of NLC cells obtained in vitro from PBL of CLL patients correlates with B2M serum level and SURVIVIN gene expression in CLL cells ex vivo. High B2M level is a marker of poor prognosis. SURVIVIN represents a family of IAP (Inhibitor of APoptosis) proteins. While rare in PBL of CLL patients, its expression is typical for proliferating leukemic cells pool in pseudofollicle microenvironment. SURVIVIN inhibits apoptosis by blocking caspase-3 and -7. Considering the protective role of NLC cells towards CLL lymphocytes in vitro, these results altogether with observed tendency to shorter survival of patients generating high NLCs number may prove the presence of supportive mechanisms exerted by NLCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3468-3468
Author(s):  
Xiaoyang Ling ◽  
Ye Chen ◽  
Peter P. Ruvolo ◽  
Vivian Ruvolo ◽  
Zhiqiang Wang ◽  
...  

Abstract Abstract 3468 Mesenchymal stromal cells (MSC) participate in the generation of the microenvironmental bone marrow niche which protects normal and leukemic stem cells from injuries, including chemotherapy. MSC produce numerous factors that aid in this function; however, little is known about how leukemic cells affect MSC. In this study, paired murine AML cells, MLL/ENL/FIT3-ITD/p53−/− and MLL/ENL/FIT3-ITD/p53wt, originally derived from C57BL/6 mice (Zuber et al. Genes & Dev. 2009), were co-cultured with MSC from the same strain. After 48 hrs, MSC were isolated by FACS sorting using CD45−/PDGFr+ as markers. Total RNA was profiled on Illumina WG6 mouse whole-genome bead arrays by standard procedures. The significance analysis of microarrays (SAM) method identified 429 differentially-expressed genes (DEG) whose expression in MSC differed significantly (false discovery rate, 10%) in co-cultures with p53−/− (C78) vs. p53wt (C147) leukemic cells. Differences in these DEG were highly consistent in replicates (Figure 1). The results demonstrate that: 1) p53 status (p53−/− vs. p53wt) of AML cells affects GEP patterns in co-cultured MSC. Comparison of the GEP in MSC co-cultured with p53−/− (78) or p53wt (147) (Fig 1) identified the following 5 genes that showed the most significant differences (up- or down-regulated): up-regulated: WNT16, WNT5, IGFBp5, GCNT1, ATP1B1; down-regulated: NOS2, DCN, CCL7, CCL2, CAR9, CCL4. These were selected for qPCR validation, and the results confirmed the array data. In addition, immunohistochemical staining showed that WNT16 was up-regulated in MSC co-cultured with p53wt leukemic cells. In addition, CXCL5 was found up-regulated in MSC co-cultured with p53−/− leukemic cells. These results were consistent with the GEP data. 2) Leukemic cells alter MSC Signaling proteins in vitro: Western blotting showed that Stat3, Akt, PTEN, CXCL5 and HIF-1α were up- regulated in MSC co-cultured with p53−/− leukemic cells as compared to p53wt leukemic cells (48 hrs). Additional analyses showed that the downstream targets of HIF-1α, VEGFa and VEGFc, but not VEGFb, were up-regulated. Taken together, these results suggest that 1) leukemic cells with different p53 genetic background co-cultured with normal MSC have profoundly differential effects on GEP of normal MSC; 2) MSC co-cultured with p53−/− leukemic cells resulted in increased levels of onco-proteins such as Akt and HIF-1α when compared to MSC co-cultured with p53wt leukemic cells. Results suggest, for the first time, that the genetics of leukemic cells determines gene expression in co-cultured MSC. In vivo experiments are in progress to provide in vivo evidence for the existence of a novel model of leukemia-stroma interactions where the genetics of the tumor cell impacts stromal cell biology. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2050-2050
Author(s):  
Christina Wu ◽  
Fitzgerald S Lao ◽  
Emily Nan ◽  
Hongying Li ◽  
Michael Y. Choi ◽  
...  

Abstract The oncogenic Wnt pathway is aberrantly activated in most CLL clones, and hence is an attractive target for therapy. The casein kinase 2 (CK2) enzyme is an established positive regulator of Wnt signaling. The inhibitor Silmitasertib, also known as CX-4945, is a nanomolar inhibitor of CK2. It has been reported that CK2 is overexpressed in CLL. Here we have investigated the effects of CX-4945 on WNT signaling in primary CLL cells. We confirmed that CX-4945 displayed in vitro cytotoxic activity toward CLL cells at very low µM concentration, as previously reported by others. However, at least 2-3 fold higher concentration of CX-4945 was required to achieve a similar toxicity against normal PBMC. Previously, our laboratory has successfully utilized a short-term CLL "parking" model in immunodeficient RAG/gamma chain knock out (RG-KO) mice to evaluate the in vivo efficacy and potential toxicity of anti-CLL agents. CX-4945 at dosages of 0.3-10 mg/kg was administered by oral gavage daily for 6 days to mice injected i.p. with 10 million CLL cells. These dosages of drug were well tolerated, and potently inhibited CLL persistence in the xenotransplanted mice. In a reporter gene assay, CX-4945 dose-dependently inhibited Wnt target gene expression. Furthermore, inhibition of dishevelled-2 (Dvl-2) protein expression was observed in primary CLL patient samples treated with 3-10 µM CX-4945 for 4-16 hours. Similar reduction in p-GSK3b(S9) protein was also observed. Quantitative RT-PCR also confirmed down regulation of b-catenin gene expression in primary CLL patient samples treated with 10 µM CX-4945 for 4h. Further molecular analyses of predictive or correlative biomarkers is ongoing using Nanostring PanCancer multipathway gene analysis. In a preliminary study, we found that CX-4945 perturbed the expression of multiple genes implicated in CLL development and survival. In summary, the CK2 inhibitor CX-4945 inhibited Wnt signaling and CLL survival, and displayed oral activity in mice. CK2 inhibitors are thus potential therapeutic agents for CLL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document