scholarly journals Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis

2021 ◽  
Vol 12 ◽  
Author(s):  
Nahum Méndez-Sánchez ◽  
Jacqueline Córdova-Gallardo ◽  
Beatriz Barranco-Fragoso ◽  
Mohammed Eslam

Metabolic Associated Fatty liver disease (MAFLD) is a global health problem and represents the most common cause of chronic liver disease in the world. MAFLD spectrum goes from simple steatosis to cirrhosis, in between metabolic steatohepatitis with progressive fibrosis, which pathogenesis is not completely understood. Hence, the role of the immune system has become an important fact in the trigger of inflammatory cascades in metabolic steatohepatitis and in the activation of hepatic stellate cells (HSCs). Among, the more studied immune cells in the pathogenesis of MAFLD are macrophages, T cells, natural killer and dendritic cells. In particular, hepatic dendritic cells had recently attracted a special attention, with a dual role in the pathogenesis of MAFLD. These cells have the capacity to switch from a tolerant state to active state inducing an inflammatory cascade. Furthermore, these cells play a role in the lipid storage within the liver, having, thus providing a crucial nexus between inflammation and lipid metabolism. In this review, we will discuss the current knowledge on the dual role of dendritic cells in lipid accumulation, as wells as in the triggering of hepatic inflammation and hepatocytes cell death in metabolic steatohepatitis.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Shashi Bala ◽  
Gyongyi Szabo

Alcoholic liver disease (ALD) is a major global health problem. Chronic alcohol use results in inflammation and fatty liver, and in some cases, it leads to fibrosis and cirrhosis or hepatocellular carcinoma. Increased proinflammatory cytokines, particularly TNF alpha, play a central role in the pathogenesis of ALD. TNF alpha is tightly regulated at transcriptional and posttranscriptional levels. Recently, microRNAs (miRNAs) have been shown to modulate gene functions. The role of miRNAs in ALD is getting attention, and recent studies suggest that alcohol modulates miRNAs. Recently, we showed that alcohol induces miR-155 expression both in vitro (RAW 264.7 macrophage) and in vivo (Kupffer cells, KCs of alcohol-fed mice). Induction of miR-155 contributed to increased TNF alpha production and to the sensitization of KCs to produce more TNF alpha in response to LPS. In this paper, we summarize the current knowledge of miRNAs in ALD and also report increased expression of miR-155 and miR-132 in the total liver as well as in isolated hepatocytes and KCs of alcohol-fed mice. Our novel finding of the alcohol-induced increase of miRNAs in hepatocytes and KCs after alcohol feeding provides further insight into the evolving knowledge regarding the role of miRNAs in ALD.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0156063 ◽  
Author(s):  
Besma Aouar ◽  
Denisa Kovarova ◽  
Sebastien Letard ◽  
Albert Font-Haro ◽  
Jonathan Florentin ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Julie Massart ◽  
Karima Begriche ◽  
Jessica H. Hartman ◽  
Bernard Fromenty

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingfei Chu ◽  
Xinyu Gu ◽  
Qiuxian Zheng ◽  
Jing Wang ◽  
Haihong Zhu

In addition to playing a pivotal role in cellular energetics and biosynthesis, mitochondrial components are key operators in the regulation of cell death. In addition to apoptosis, necrosis is a highly relevant form of programmed liver cell death. Differential activation of specific forms of programmed cell death may not only affect the outcome of liver disease but may also provide new opportunities for therapeutic intervention. This review describes the role of mitochondria in cell death and the mechanism that leads to chronic liver hepatitis and liver cirrhosis. We focus on mitochondrial-driven apoptosis and current knowledge of necroptosis and discuss therapeutic strategies for targeting mitochondrial-mediated cell death in liver diseases.


2019 ◽  
Vol 20 (23) ◽  
pp. 6084 ◽  
Author(s):  
Mailin Gan ◽  
Linyuan Shen ◽  
Yuan Fan ◽  
Ya Tan ◽  
Ting Zheng ◽  
...  

Effective, targeted therapy for chronic liver disease nonalcoholic steatohepatitis (NASH) is imminent. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for liver disease. Here, we investigated the functional role of miR-451 and the therapeutic effects of genistein in the NASH mouse model. MiR-451 was downregulated in various types of liver inflammation, and subsequent experiments showed that miR-451 regulates liver inflammation via IL1β. Genistein is a phytoestrogen with anti-inflammatory and anti-oxidant effects. Interestingly, we found that the anti-inflammatory effects of genistein were related to miR-451 and was partially antagonized by the miR-451 inhibitor. MiR-451 overexpression or genistein treatment inhibited IL1β expression and inflammation. Taken together, this study shows that miR-451 has a protective effect on hepatic inflammation, and genistein can be used as a natural promoter of miR-451 to ameliorate NASH.


2017 ◽  
Vol 3 ◽  
pp. 36
Author(s):  
T.M. Garcia-Bates ◽  
M. Palma ◽  
B. Macatangay ◽  
C. Rinaldo ◽  
R. Mailliard

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 24 ◽  
Author(s):  
Olga Khomich ◽  
Alexander V. Ivanov ◽  
Birke Bartosch

Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.


Gut ◽  
2018 ◽  
Vol 68 (3) ◽  
pp. 547-561 ◽  
Author(s):  
Mirjam B Zeisel ◽  
Punita Dhawan ◽  
Thomas F Baumert

Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV—one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document