scholarly journals Probiotic Bacteria and Their Cell Walls Induce Th1-Type Immunity Against Salmonella Typhimurium Challenge

2021 ◽  
Vol 12 ◽  
Author(s):  
José María Lemme-Dumit ◽  
Silvia Inés Cazorla ◽  
Gabriela Del Valle Perdigón ◽  
Carolina Maldonado-Galdeano

Probiotics have been associated with a variety of health benefits. They can act as adjuvant to enhance specific immune response. Bacterial cell wall (CW) molecules are key structures that interact with host receptors promoting probiotic effects. The adjuvant capacity underlying this sub-cellular fraction purified from Lactobacillus casei CRL431 and L. paracasei CNCMI-1518 remains to be characterized. We interrogated the molecular and cellular events after oral feeding with probiotic-derived CW in addition to heat-inactivated Salmonella Typhimurium and their subsequent protective capacity against S. Typhimurium challenge. Intact probiotic bacteria were orally administered for comparison. We find that previous oral feeding with probiotics or their sub-cellular fraction reduce bacterial burden in spleen and liver after Salmonella challenge. Antibody responses after pathogen challenge were negligible, characterized by not major changes in the antibody-mediated phagocytic activity, and in the levels of total and Salmonella-specific intestinal sIgA and serum IgG, respectively. Conversely, the beneficial effect of probiotic-derived CW after S. Typhimurium challenge were ascribed to a Th1-type cell-mediated immunity which was characterized by augmentation of the delayed-type hypersensitivity response. The cell-mediated immunity associated with the oral feeding with probiotic-derived CW was accompanied with a Th1-cell polarizing cytokines, distinguished by increase IFN-γ/IL-4 ratio. Similar results were observed with the intact probiotics. Our study identified molecular events associated with the oral administration of sub-cellular structures derived from probiotics and their adjuvant capacity to exert immune modulatory function.

2001 ◽  
Vol 8 (4) ◽  
pp. 762-767 ◽  
Author(s):  
R. de Waard ◽  
J. Garssen ◽  
J. Snel ◽  
G. C. A. M. Bokken ◽  
T. Sako ◽  
...  

ABSTRACT In this study, the effects of orally administered viableLactobacillus casei Shirota strain YIT9029 on the immunity parameters of Wistar and Brown Norway rats were examined. For this purpose, we used the Trichinella spiralis host resistance model. Two weeks before and during T. spiralisinfection, rats were fed 109 viable L. casei bacteria 5 days per week. The T. spiralis-specific delayed-type hypersensitivity (DTH) response was significantly enhanced in both Wistar and Brown Norway rats given L. casei. In both rat strains fedL. casei, serum T. spiralis-specific immunoglobulin G2b (IgG2b) concentrations were also significantly increased. In the model, no significant effects ofL. casei on larval counts or inflammatory reactions in the tongue musculature, body weights, or lymphoid organ weights were observed. Serum specific antibody responses, other than IgG2b, were not changed by feeding of L. casei. In contrast toL. casei, it was shown that orally administeredBifidobacterium breve or Bifidobacterium bifidum had no influence on the measured infection and immunity indices in the rat infection model. Since the rat DTH response is considered to be a manifestation of Th1 cell-mediated immunity and the IgG2b isotype has been associated with Th1 activity, it was concluded that Th1 cells could play an active role in the immunomodulatory effects of orally administered L. casei. Furthermore, our data do not indicate that the effect of oral supplementation withL. casei is dependent on the genetic background of the host.


Parasitology ◽  
2014 ◽  
Vol 141 (12) ◽  
pp. 1657-1666 ◽  
Author(s):  
SHU-CHUN CHUANG ◽  
CHUNG-DA YANG

SUMMARYCurrent development efforts of subunit vaccines against Toxoplasma gondii, the aetiological agent of toxoplasmosis, have been focused mainly on tachyzoite surface antigens (SAGs) such as SAG2, due to their attachment roles in the process of host-cell invasion. In the present study, we aimed to produce poly(lactide-co-glycolide) (PLG) microparticles (MPs) containing recombinant SAG2 (rSAG2) to induce improved immunity against T. gondii. The resulting PLG-encapsulated rSAG2 (PLG-rSAG2) MPs, 2·14–3·63 μm in diameter, showed 74–80% entrapment efficiency and gradually released antigenic rSAG2 protein (88·3% of the total protein load) for a long 33-day period. Peritoneal immunization with PLG-rSAG2 MPs in BALB/c mice resulted in not only sustained (10 weeks) lymphocyte proliferation and IFN-γ production but also an improved protective capacity (87%) against a lethal subcutaneous challenge of 1×104 live tachyzoites of T. gondii (RH strain). In conclusion, the sustained release of rSAG2 protein from PLG-rSAG2 MPs extends Th1 cell-mediated immunity (lymphocyte proliferation and IFN-γ production) and induces improved protection against T. gondii tachyzoite infection in mice.


2008 ◽  
Vol 76 (11) ◽  
pp. 4913-4923 ◽  
Author(s):  
Chengming Wang ◽  
Frederik W. van Ginkel ◽  
Teayoun Kim ◽  
Dan Li ◽  
Yihang Li ◽  
...  

ABSTRACT Severe chlamydial disease typically occurs after previous infections and results from a hypersensitivity response that is also required for chlamydial elimination. Here, we quantitatively dissected the immune and disease responses to repeated Chlamydia pneumoniae lung infection by multivariate modeling with four dichotomous effects: mouse strain (A/J or C57BL/6), dietary protein content (14% protein and 0.3% l-cysteine-0.9% l-arginine, or 24% protein and 0.5% l-cysteine-2.0% l-arginine), dietary antioxidant content (90 IU α-tocopherol/kg body weight versus 450 IU α-tocopherol/kg and 0.1% g l-ascorbate), and time course (3 or 10 days postinfection). Following intranasal C. pneumoniae challenge, C57BL/6 mice on a low-protein/low-antioxidant diet, but not C57BL/6 mice on other diets or A/J mice, exhibited profoundly suppressed early lung inflammatory and pan-T-cell (CD3δ+) and helper T-cell (CD45) responses on day 3 but later strongly exacerbated disease on day 10. Contrast analyses characterized severe C. pneumoniae disease as being a delayed-type hypersensitivity (DTH) response with increased lung macrophage and Th1 cell marker transcripts, increased Th1:Th2 ratios, and Th1 cytokine-driven inflammation. Results from functional analyses by DTH, enzyme-linked immunospot, and immunohistofluorescence assays were consistent with the results obtained by transcript analysis. Thus, chlamydial disease after secondary infection is a temporal dysregulation of the T-cell response characterized by a profoundly delayed T-helper cell response that results in a failure to eliminate the pathogen and provokes later pathological Th1 inflammation. This delayed T-cell response is under host genetic control and nutritional influence. The mechanism that temporally and quantitatively regulates the host T-cell population is the critical determinant in chlamydial pathogenesis.


1998 ◽  
Vol 188 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
Mark H. Kaplan ◽  
Andrea L. Wurster ◽  
Michael J. Grusby

The differentiation of T helper (Th) cells is regulated by members of the signal transducer and activator of transcription (STAT) family of signaling molecules. We have generated mice lacking both Stat4 and Stat6 to examine the ability of Th cells to develop in the absence of these two transcription factors. Stat4, Stat6−/− lymphocytes fail to differentiate into interleukin (IL)-4–secreting Th2 cells. However, in contrast to Stat4−/− lymphocytes, T cells from Stat4, Stat6−/− mice produce significant amounts of interferon (IFN)-γ when activated in vitro. Although Stat4, Stat6−/− lymphocytes produce less IFN-γ than IL-12–stimulated control lymphocytes, equivalent numbers of IFN-γ–secreting cells can be generated from cultures of Stat4, Stat6−/− lymphocytes activated under neutral conditions and control lymphocytes activated under Th1 cell–promoting conditions. Moreover, Stat4, Stat6−/− mice are able to mount an in vivo Th1 cell–mediated delayed-type hypersensitivity response. These results support a model of Th cell differentiation in which the generation of Th2 cells requires Stat6, whereas a Stat4-independent pathway exists for the development of Th1 cells.


1989 ◽  
Vol 169 (5) ◽  
pp. 1565-1581 ◽  
Author(s):  
C L Cooper ◽  
C Mueller ◽  
T A Sinchaisri ◽  
C Pirmez ◽  
J Chan ◽  
...  

Analysis of tissue lesions of the major reactional states of leprosy was undertaken to study the immune mechanisms underlying regulation of cell-mediated immunity and delayed-type hypersensitivity (DTH) in man. In situ hybridization hybridization of reversal reaction biopsy specimens for INF-gamma mRNA expression revealed a 10-fold increase in specific mRNA-containing cells over that observed in unresponsive lepromatous patients. Expression of huHF serine esterase, a marker for T cytotoxic cells, were fourfold increased in reversal reaction and tuberculoid lesions above that detected in unresponsive lepromatous individuals. Immunohistology of reversal reactions confirmed a selective increase of Th and T cytotoxic cells in the cellular immune response. Of interest, the microanatomic location of these serine esterase mRNA-containing cells was identical to the distribution of CD4+ cells. Analysis of erythema nodosum leprosum (ENL) lesions revealed differences in the underlying immune processes in comparison with reversal reaction lesions. Although phenotypic Th cells predominated in ENL lesions, IFN-gamma and serine esterase gene expression were markedly reduced. We suggest that reversal reactions represent a hyperimmune DTH response characterized by a selective increase of CD4+ IFN-gamma producing cells and T cytotoxic cells, which result in the clearing of bacilli and concomitant tissue damage. In contrast, ENL reactions may be viewed as a transient diminution of Ts cells and activity leading to a partial and transient augmentation in cell-mediated immunity, perhaps sufficient to result in antibody and immune complex formation, but insufficient to clear bacilli from lesions.


2018 ◽  
Vol 2018 ◽  
pp. 1-28 ◽  
Author(s):  
Fiona Limanaqi ◽  
Stefano Gambardella ◽  
Francesca Biagioni ◽  
Carla L. Busceti ◽  
Francesco Fornai

Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyan Ding ◽  
Yajie Chang ◽  
Siquan Wang ◽  
Dong Yan ◽  
Jiakui Yao ◽  
...  

The neurotransmitter γ-aminobutyric acid (GABA) is known to affect the activation and function of immune cells. This study investigated the role of GABA transporter (GAT)-2 in the differentiation of type 1 helper T (Th1) cells. Naïve CD4+ T cells isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice were cultured; Th1 cell differentiation was induced and transcriptome and bioinformatics analyses were carried out. We found that GAT-2 deficiency promoted the differentiation of naïve T cells into Th1 cells. RNA sequencing revealed 2984 differentially expressed genes including 1616 that were up-regulated and 1368 that were down-regulated in GAT-2 KO cells compared to WT cells, which were associated with 950 enriched Gene Ontology terms and 33 enriched Kyoto Encyclopedia of Genes and Genomes pathways. Notably, 4 signal transduction pathways (hypoxia-inducible factor [HIF]-1, Hippo, phospholipase D, and Janus kinase [JAK]/signal transducer and activator of transcription [STAT]) and one metabolic pathway (glycolysis/gluconeogenesis) were significantly enriched by GAT-2 deficiency, suggesting that these pathways mediate the effect of GABA on T cell differentiation. Our results provide evidence for the immunomodulatory function of GABA signaling in T cell-mediated immunity and can guide future studies on the etiology and management of autoimmune diseases.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25516 ◽  
Author(s):  
Barron L. Lincoln ◽  
Sahar H. Alabsi ◽  
Nicholas Frendo ◽  
Robert Freund ◽  
Lani C. Keller

Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments.


1985 ◽  
Vol 63 (7) ◽  
pp. 1933-1939 ◽  
Author(s):  
T. Borys ◽  
S. Deshpande ◽  
R. Jones ◽  
E. W. Abrahamson

The correlation of molecular events with structural changes within the cell requires a non-destructive relaxation technique that can be adapted to measure such cellular changes in a time range of milliseconds to minutes. Light scattering relaxation techniques have proved useful for such studies as they can often be measured simultaneously or in parallel with absorption or fluorescence spectral changes characterizing molecular or macromolecular processes. Such techniques are proving useful in the study of photobiological processes such as visual photoreception where specific cytological changes produced photochemically can be effected by alternate controlled perturbations such as osmotic shrinking or swelling of cell organelles and (or) whole cells. This paper illustrates how light scattering relaxation spectrophotometry can be applied to the correlation of molecular and cellular events in visual photoreceptors.


1971 ◽  
Vol 134 (1) ◽  
pp. 21-47 ◽  
Author(s):  
C. R. Parish

Flagellin (mol.wt. 40,000) from S. adelaide organisms and a series of acetoacetyl derivatives of flagellin were tested for their ability to induce humoral and cell-mediated immunity in adult rats. It was found that unmodified flagellin was an excellent inducer of antibody formation but a poor inducer of delayed-type hypersensitivity. In contrast, increasing acetoacetylation steadily destroyed the ability of flagellin to initiate antibody formation but enhanced the capacity of the molecule to induce flagellin-specific cell-mediated immunity and antibody tolerance. In fact, it appeared that in adult rats antibody formation and cell-mediated immunity may well be opposing immunological processes. Furthermore, the affinity of the acetoacetyl flagellins for anti-flagellin antibodies appeared to determine the type of immune response which predominated. High affinity antigen produced antibody formation whereas low affinity antigen induced cell-mediated immunity and antibody tolerance. The importance of affinity was further evidenced by the fact that a CNBr digest of flagellin induced humoral and cellular immune responses identical to an acetoacetylated flagellin of comparable antigenic activity. From these studies it was proposed that both humoral and cell-mediated immunity can be directed against the same antigenic determinants but that the specificity requirements for delayed hypersensitivity (and antibody tolerance) are less than those required for antibody formation. Some remarkable immunological features of the flagellin system were revealed. Flagellin induced comparable delayed-type hypersensitivity when injected in either saline or FCA. Furthermore, FCA only slightly enhanced the delayed responses induced by the acetoacetyl flagellins and in fact these preparations produced antibody tolerance whether injected in saline or adjuvant. Finally, in contrast to the adult tolerance induced by the acetoacetylated flagellins, which existed only at the antibody level, tolerance in neonatal rats existed at the level of both humoral and cell-mediated immunity. This finding is the first indication of a fundamental difference between neonatal and adult tolerance. The significance of these findings is discussed in the light of current immunological concepts and a hypothesis proposed to explain these phenomena.


Sign in / Sign up

Export Citation Format

Share Document