scholarly journals Defining the Role of Nuclear Factor (NF)-κB p105 Subunit in Human Macrophage by Transcriptomic Analysis of NFKB1 Knockout THP1 Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Domenico Somma ◽  
Fatma O. Kok ◽  
David Kerrigan ◽  
Christine A. Wells ◽  
Ruaidhrí J. Carmody

Since its discovery over 30 years ago the NF-ĸB family of transcription factors has gained the status of master regulator of the immune response. Much of what we understand of the role of NF-ĸB in immune development, homeostasis and inflammation comes from studies of mice null for specific NF-ĸB subunit encoding genes. The role of inflammation in diseases that affect a majority of individuals with health problems globally further establishes NF-ĸB as an important pathogenic factor. More recently, genomic sequencing has revealed loss of function mutations in the NFKB1 gene as the most common monogenic cause of common variable immunodeficiencies in Europeans. NFKB1 encodes the p105 subunit of NF-ĸB which is processed to generate the NF-ĸB p50 subunit. NFKB1 is the most highly expressed transcription factor in macrophages, key cellular drivers of inflammation and immunity. Although a key role for NFKB1 in the control of the immune system is apparent from Nfkb1-/- mouse studies, we know relatively little of the role of NFKB1 in regulating human macrophage responses. In this study we use the THP1 monocyte cell line and CRISPR/Cas9 gene editing to generate a model of NFKB1-/- human macrophages. Transcriptomic analysis reveals that activated NFKB1-/- macrophages are more pro-inflammatory than wild type controls and express elevated levels of TNF, IL6, and IL1B, but also have reduced expression of co-stimulatory factors important for the activation of T cells and adaptive immune responses such as CD70, CD83 and CD209. NFKB1-/- THP1 macrophages recapitulate key observations in individuals with NFKB1 haploinsufficiency including decreased IL10 expression. These data supporting their utility as an in vitro model for understanding the role of NFKB1 in human monocytes and macrophages and indicate that of loss of function NFKB1 mutations in these cells is an important component in the associated pathology.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 931
Author(s):  
Mayra M. Ferrari Ferrari Barbosa ◽  
Alex Issamu Kanno ◽  
Leonardo Paiva Farias ◽  
Mariusz Madej ◽  
Gergö Sipos ◽  
...  

Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Xu ◽  
Jun Liang ◽  
H. F. Geng ◽  
Jun Lu ◽  
Rui Li ◽  
...  

Background. Emerging evidence suggests that T2DM is attributable to the dysfunction of β-cells and the activation of islet stellate cells (ISCs). The wingless-type MMTV integration site family member 5a (Wnt5a)/frizzled 5 (Fzd5) signalling pathway might take part in this process. Our study is aimed at defining the status of ISCs during β-cell insulin secretion homeostasis by determining the role of the Wnt5a protein in the regulation of insulin production. We examined the effects of the status of ISCs on β-cell insulin secretion in normoglycemic db/m and hyperglycaemic db/db mice. Methods. iTRAQ protein screening and RNA interference were used to determine novel ISC-derived secretory products that may use other mechanisms to influence the function of islets. Results. We showed a significant reduction in insulin secretion by β-cells in vitro when they were cocultured with db/db ISCs compared to when they were cocultured with ISCs isolated from normoglycemic db/m mice; in addition, both Wnt5a and its receptor Fzd5 were more highly expressed by quiescent ISCs than by activated db/db ISCs. Treatment with exogenous Wnt5a increased the secretion of insulin in association with the deactivation of ISCs. Conclusion. Our observations revealed that the Wnt5a protein is a key effector of ISC-mediated improvement in islet function.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xue-Yang Li ◽  
Yi Hu ◽  
Nian-Shuang Li ◽  
Jian-Hua Wan ◽  
Yin Zhu ◽  
...  

Background. The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. Materials and Methods. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. Results. RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P<0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P<0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. Conclusions. Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.


2002 ◽  
Vol 103 (5) ◽  
pp. 441-449 ◽  
Author(s):  
Sharon VIVERS ◽  
Ian DRANSFIELD ◽  
Simon P. HART

Understanding the cellular and molecular mechanisms that determine whether inflammation resolves or progresses to scarring and tissue destruction should lead to the development of effective therapeutic strategies for inflammatory diseases. Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation, providing a mechanism for down-regulation of function and triggering clearance by macrophages without inducing a pro-inflammatory response. However, if the rate of cell death by apoptosis is such that the macrophage clearance capacity is exceeded, apoptotic cells may progress to secondary necrosis, resulting in the release of harmful cellular contents and in damage to the surrounding tissue. There are many possible ways in which the rate and capacity of the macrophage-mediated clearance of apoptotic cells may be enhanced or suppressed. Ligation of human macrophage surface CD44 by bivalent monoclonal antibodies rapidly and profoundly augments the capacity of macrophages to phagocytose apoptotic neutrophils in vitro. The molecular mechanism behind this effect and its potential significance in vivo is a current focus of research.


2003 ◽  
Vol 71 (5) ◽  
pp. 2615-2625 ◽  
Author(s):  
Sabine Chapuy-Regaud ◽  
A. David Ogunniyi ◽  
Nicole Diallo ◽  
Yvette Huet ◽  
Jean-François Desnottes ◽  
...  

ABSTRACT The homolactic and catalase-deficient pathogen Streptococcus pneumoniae is not only tolerant to oxygen but requires the activity of its NADH oxidase, Nox, to develop optimal virulence and competence for genetic transformation. In this work, we show that the global regulator RegR is also involved in these traits. Genetic dissection revealed that RegR regulates competence and the expression of virulence factors, including hyaluronidase. In bacteria grown in vitro, RegR represses hyaluronidase. At neutral pH, it increases adherence to A549 epithelial cells, and at alkaline pH, it acts upstream of the CiaRH two-component signaling system to activate competence. These phenotypes are not associated with changes in antibiotic resistance, central metabolism, and carbohydrate utilization. Although the RegR0 (where 0 indicates the loss of the protein) mutation is sufficient to attenuate experimental virulence of strain 23477 in mice, the introduction of an additional hyl0 (where 0 indicates the loss of function) mutation in the RegR0 strain 23302 dramatically reduces its virulence. This indicates that residual virulence of the RegR0 Hyl+ derivative is due to hyaluronidase and supports the dual role of RegR in virulence. This LacI/GalR regulator, not essential for in vitro growth in rich media, is indeed involved in the adaptive response of the pneumococcus via its control of competence, adherence, and virulence.


2013 ◽  
Vol 41 (5) ◽  
pp. 1325-1330 ◽  
Author(s):  
Marion Babot ◽  
Alexander Galkin

The unique feature of mitochondrial complex I is the so-called A/D transition (active–deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~104 min−1) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1–10 min−1) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys39 of mitochondrially encoded subunit ND3 makes the D-form susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.


2020 ◽  
Author(s):  
Swetha Mohan ◽  
Paul J. Sampognaro ◽  
Andrea R. Argouarch ◽  
Jason C. Maynard ◽  
Anand Patwardhan ◽  
...  

Abstract Background: Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases at a range of pH setpoints.Results: In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in variable, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn show increased PGRN processing to granulin F, correlating with increased activity of AEP, in a region-specific manner. Conclusions: This study demonstrates that multiple lysosomal proteases may work in concert to liberate granulins and implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage may represent a new strategy to modulate PGRN and granulin levels in disease.


Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2020 ◽  
Author(s):  
Cláudia Brito ◽  
Francisco S. Mesquita ◽  
Daniel S. Osório ◽  
Joana Pereira ◽  
Neil Billington ◽  
...  

AbstractNon-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that along with actin assembles into actomyosin filaments inside cells. NM2A is fundamental in cellular processes requiring force generation such as cell adhesion, motility and cell division, and plays important functions in different stages of development and during the progression of viral and bacterial infections. We previously identified at the motor domain of the NM2A, a novel Src-dependent tyrosine phosphorylation on residue 158 (pTyr158), which is promoted by Listeria monocytogenes infection. Despite the central role of NM2A in several cell biology processes, the pTyr at this specific residue had never been reported. Here we showed that LLO, a toxin secreted by Listeria, is sufficient to trigger NM2A pTyr158 by activating Src, which coordinates actomyosin remodeling. We further addressed the role of NM2A pTyr158 on the organization and dynamics of the actomyosin cytoskeleton and found that by controlling the activation of the NM2A, the status of the pTyr158 alters cytoskeletal organization, dynamics of focal adhesions and cell motility, without affecting NM2A enzymatic activity in vitro. Ultimately, by using Caenorhabditis elegans as a model to assess the role of this pTyr158in vivo, we found that the status of the pTyr158 has implications in gonad function and is required for organism survival under stress conditions. We conclude that the fine control of the NM2A pTyr158 is required for cell cytoskeletal remodeling and dynamics, and we propose Src-dependent NM2A pTyr158 as a novel layer of regulation of the actomyosin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document