scholarly journals Inhibition of Granuloma Triglyceride Synthesis Imparts Control of Mycobacterium tuberculosis Through Curtailed Inflammatory Responses

2021 ◽  
Vol 12 ◽  
Author(s):  
Stanzin Dawa ◽  
Dilip Menon ◽  
Prabhakar Arumugam ◽  
Akash Kumar Bhaskar ◽  
Moumita Mondal ◽  
...  

Lipid metabolism plays a complex and dynamic role in host-pathogen interaction during Mycobacterium tuberculosis infection. While bacterial lipid metabolism is key to the success of the pathogen, the host also offers a lipid rich environment in the form of necrotic caseous granulomas, making this association beneficial for the pathogen. Accumulation of the neutral lipid triglyceride, as lipid droplets within the cellular cuff of necrotic granulomas, is a peculiar feature of pulmonary tuberculosis. The role of triglyceride synthesis in the TB granuloma and its impact on the disease outcome has not been studied in detail. Here, we identified diacylglycerol O-acyltransferase 1 (DGAT1) to be essential for accumulation of triglyceride in necrotic TB granulomas using the C3HeB/FeJ murine model of infection. Treatment of infected mice with a pharmacological inhibitor of DGAT1 (T863) led to reduction in granuloma triglyceride levels and bacterial burden. A decrease in bacterial burden was associated with reduced neutrophil infiltration and degranulation, and a reduction in several pro-inflammatory cytokines including IL1β, TNFα, IL6, and IFNβ. Triglyceride lowering impacted eicosanoid production through both metabolic re-routing and via transcriptional control. Our data suggests that manipulation of lipid droplet homeostasis may offer a means for host directed therapy in Tuberculosis.

2021 ◽  
Author(s):  
Stanzin Dawa ◽  
Dilip Menon ◽  
Prabhakar Arumugam ◽  
Akash Kumar Bhaskar ◽  
Moumita Mondal ◽  
...  

Lipid metabolism plays a complex and dynamic role in host-pathogen interaction during Mycobacterium tuberculosis infection. While bacterial lipid metabolism is key to the success of the pathogen, the host also offers a lipid rich environment in the form of necrotic caseous granulomas, making this association beneficial for the pathogen. Accumulation of the neutral lipid triglyceride, as lipid droplets at the cellular cuff of necrotic granulomas, is a peculiar feature of pulmonary tuberculosis. The role of triglyceride synthesis in the TB granuloma and its impact on the disease outcome has not been studied in detail. Here, we identified diacylglycerol O-acyltransferase 1 (DGAT1) to be essential for accumulation of triglyceride in necrotic TB granulomas using the C3HeB/FeJ murine model of infection. Treatment of infected mice with a pharmacological inhibitor of DGAT1 (T863) led to reduction in granuloma triglyceride levels and bacterial burden. A decrease in bacterial burden was associated with reduced neutrophil infiltration and degranulation, and a reduction in several pro-inflammatory cytokines including IL1β, TNFα, IL6, and IFNβ. Triglyceride lowering impacted eicosanoid production through both metabolic re-routing and via transcriptional control. Our data suggests that manipulation of lipid droplet homeostasis may offer a means for host directed therapy in Tuberculosis.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


2020 ◽  
Vol 8 (2) ◽  
pp. 228 ◽  
Author(s):  
Lilibeth Arias ◽  
Paula Cardona ◽  
Martí Català ◽  
Víctor Campo-Pérez ◽  
Clara Prats ◽  
...  

Cording was the first virulence factor identified in Mycobacterium tuberculosis (Mtb). We aimed to ascertain its role in the induction of active tuberculosis (TB) in the mouse strain C3HeB/FeJ by testing the immunopathogenic capacity of the H37Rv strain. We have obtained two batches of the same strain by stopping their growth in Proskauer Beck liquid medium once the mid-log phase was reached, in the noncording Mtb (NCMtb) batch, and two days later in the cording Mtb (CMtb) batch, when cording could be detected by microscopic analysis. Mice were challenged with each batch intravenously and followed-up for 24 days. CMtb caused a significant increase in the bacillary load at an early stage post-challenge (day 17), when a granulomatous response started, generating exudative lesions characterized by neutrophilic infiltration, which promoted extracellular bacillary growth together with cording formation, as shown for the first time in vivo. In contrast, NCMtb experienced slight or no bacillary growth and lesions could barely be detected. Previous Bacillus Calmette-Guérin (BCG) vaccination or low dose aerosol (LDA) Mtb infection were able to delay the progression towards active TB after CMtb challenge. While BCG vaccination also reduced bacillary load when NCMtb was challenged, LDA did not, and its proliferative lesions experienced neutrophil infiltration. Analysis of lung cytokine and chemokine profiles points to their capacity to block the production of CXCL-1 and further amplification of IL-1β, IL-17 and neutrophilic extracellular trap formation, all of which are essential for TB progression. These data highlight the key role of cording formation in the induction of active TB.


2020 ◽  
Vol 190 (4) ◽  
pp. 830-843 ◽  
Author(s):  
Lisa Vikström Lilljebjörn ◽  
Eva Csizmadia ◽  
Andreas Hedblom ◽  
Giacomo Canesin ◽  
Alireza Kalbasi ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1505-1505
Author(s):  
Kothari Hema ◽  
Shiva Keshava ◽  
Rit Vatsyayan ◽  
Nigel Mackman ◽  
Usha R Pendurthi ◽  
...  

Abstract Tuberculosis, a chronic lung infection caused by Mycobacterium tuberculosis (M.tb), affects nearly one third of the world’s population. Clinical manifestations of TB include hypercoagulable states and thrombotic complications particularly disseminated intravascular coagulation and deep vein thrombosis. Tissue factor (TF) plays an important role in the initiation of inflammation-induced coagulation. Various bacterial infections induce aberrant expression of TF on vascular cells, which contributes to intravascular coagulation and exacerbation of inflammation. Studies have shown that either a genetic deficiency of TF or blockade of TF functional activity reduces coagulopathy, proinflammatory cytokine release and infection-associated mortality. In contrast, TF-dependent coagulation activation and fibrin deposition may be protective in host-defense against certain bacterial infections via reducing pathogen burden and limiting their dissemination. In vitro M.tb infection markedly upregulates TF expression and increases procoagulant activity of macrophages. However, it is not yet known whether TF expression has any functional significance in TB pathogenesis. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth and containment of infection. Wild-type C57BL6 (WT) and transgenic mice that express either very low levels of human TF (low TF, ~1% of WT) or high levels of human TF (HTF, ~100% of WT) in place of murine TF were infected with aerosol exposure of M.tb H37Rv. Mice were sacrificed 2 and 8 weeks post-infection. An evaluation of in vivo TF expression, coagulation activation, proinflammatory cytokines and tissue bacterial burden was performed. M.tb infection did not significantly alter overall TF expression and procoagulant activity in lungs of WT and HTF mice. Although not statistically significant, M.tb infection increased TF activity substantially in the lung homogenates in low TF mice. Nonetheless, TF expression levels in lungs of low TF mice, both uninfected and M.tb.-infected, was negligible as compared to WT and HTF mice. M.tb infection markedly increased TF expression in localized areas within the granulomas of WT and HTF mice. Interestingly, these intensely stained TF positive patches were also present in the granulomas of low TF mice after M.tb infection. The increased localized expression of TF in low TF mice may be responsible for the increased TF activity in the lung homogenates in low TF mice. M.tb infection was not accompanied by systemic and pulmonary activation of coagulation in WT and HTF mice. There was no change in the plasma thrombin-anti-thrombin complexes (TATc) upon M.tb infection in all three genotypes. Although, the bronchoalveolar lavage (BAL) TATc significantly increased (10-fold) after M.tb infection in the low TF mice, still the level was 15-50 folds lower than those in HTF and WT mice. The levels of TNF-α, IFN-γ, IL-6 and IL1-β increased upon M.tb infection but no significant differences in the cytokine profiles of BAL and total lung homogenates were observed among the genotypes. Higher expression of TF in the granuloma of WT and HTF correlated with the presence of small discrete regions of fibrin islands especially extending toward outer margin of the granuloma whereas little fibrin staining was seen in the granuloma of low TF mice. Despite, marked differences in fibrin generation in the granuloma, there were no significant differences in either lung bacterial burden or dissemination to liver and spleen. In summary, our data suggest that TF-mediated coagulation and/or signaling does not appear to contribute to host defense during experimental tuberculosis. However, it is difficult to completely eliminate a role for TF in M.tb. pathogenesis since M.tb. induced significant amount of TF expression in localized areas in the granuloma even in low TF mice. It is possible that this small amount of TF expressed within the granuloma may be sufficient to mediate local coagulant and signaling functions to facilitate M.tb. growth and dissemination. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 23 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Chong-Bin Zhong ◽  
Xi Chen ◽  
Xu-Yue Zhou ◽  
Xian-Bao Wang

Myocardial infarction (MI) is a serious cardiovascular disease resulting in high rates of morbidity and mortality. Although advances have been made in restoring myocardial perfusion in ischemic areas, decreases in cardiomyocyte death and infarct size are still limited, attributing to myocardial ischemia/reperfusion (I/R) injury. It is necessary to develop therapies to restrict myocardial I/R injury and protect cardiomyocytes against further damage after MI. Many studies have suggested that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-inducible nuclear receptor that predominantly regulates glucose and lipid metabolism, is a promising therapeutic target for ameliorating myocardial I/R injury. Thus, this review focuses on the role of PPARγ in cardioprotection during myocardial I/R. The cardioprotective effects of PPARγ, including attenuating oxidative stress, inhibiting inflammatory responses, improving glucose and lipid metabolism, and antagonizing apoptosis, are described. Additionally, the underlying mechanisms of cardioprotective effects of PPARγ, such as regulating the expression of target genes, influencing other transcription factors, and modulating kinase signaling pathways, are further discussed.


2021 ◽  
Vol 22 (11) ◽  
pp. 5794
Author(s):  
Yu Sawada ◽  
Ayako Setoyama ◽  
Yumiko Sakuragi ◽  
Natsuko Saito-Sasaki ◽  
Haruna Yoshioka ◽  
...  

The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S130-S131
Author(s):  
M. J. MÜLLER ◽  
A. G. BURGER ◽  
E. JEQUIER ◽  
K.J. ACHESON

2010 ◽  
Vol 151 (34) ◽  
pp. 1376-1383 ◽  
Author(s):  
Mariann Harangi ◽  
István Balogh ◽  
János Harangi ◽  
György Paragh

A Niemann–Pick C1-like-1 egy szterolfelismerő domént tartalmazó membránfehérje, amelyet nagy számban expresszálnak csúcsi felszínükön a bélhámsejtek. Az utóbbi évek vizsgálatai azt igazolták, hogy ez a fehérje szükséges a szabad koleszterin bejutásához a bélhámsejtekbe a bél lumenéből. Biokémiai vizsgálatok azt igazolták, hogy a Niemann–Pick C1-like-1-hez kötődik az ezetimib, amely egy hatékony koleszterinfelszívódást gátló szer. A bélből történő koleszterinfelszívódás ütemében és az ezetimibkezelés hatékonyságában tapasztalt egyéni eltérések hátterében felmerült néhány Niemann–Pick C1-like-1 génvariáció oki szerepe.


Sign in / Sign up

Export Citation Format

Share Document