scholarly journals Effects of Electrical Pulse Stimulation on Behaviour and Survival of Marine Benthic Invertebrates

2021 ◽  
Vol 7 ◽  
Author(s):  
Pim G. Boute ◽  
Maarten Soetaert ◽  
José A. Reid Navarro ◽  
Martin J. Lankheet

Electrical pulse trawling is an alternative to conventional beam trawling for common sole (Solea solea), with the potential for higher revenues and less impact on the marine ecosystem. Concerns exist, however, that benthic invertebrates might be seriously affected by pulse fishing. Even if direct injuries and mortality were limited, changes in behaviour might compromise their survival, with potentially large impacts on food webs. Here, we investigate effects of electrical pulses on locomotion behaviour and 14-days survival of six invertebrate species from four phyla that may encounter pulse fishing gears. Electrical stimulation consisted of a Pulsed Bipolar Current at 200 V m–1, 30 Hz, 0.33 ms pulse width, and 3 s duration. We quantified species-specific behaviours before, during, and after electrical stimulation and compared these to a non-exposed control group. Responses during stimulation varied from no visible effect (echinoderms) to squirming (sea mouse) and retractions (whelk and crustaceans). Within 30 s after stimulation, all animals resumed normal behavioural patterns, without signs of lasting immobilisation. Starfish, serpent star, whelk and sea mouse showed no change in movement patterns after stimulation, whereas flying crab and hermit crab showed significant changes in activity that were indicative of increased shelter behaviour. For none of the species, survival at 14-days after stimulation was negatively affected. These findings suggest that changes in locomotion behaviour due to electrical stimulation as used in pulse trawling are unlikely to substantially compromise survival of the investigated species.

2021 ◽  
Vol 35 (2) ◽  
pp. 131-144
Author(s):  
Maijke van Bloemendaal ◽  
Sicco A. Bus ◽  
Frans Nollet ◽  
Alexander C. H. Geurts ◽  
Anita Beelen

Background. Many stroke survivors suffer from leg muscle paresis, resulting in asymmetrical gait patterns, negatively affecting balance control and energy cost. Interventions targeting asymmetry early after stroke may enhance recovery of walking. Objective. To determine the feasibility and preliminary efficacy of up to 10 weeks of gait training assisted by multichannel functional electrical stimulation (MFES gait training) applied to the peroneal nerve and knee flexor or extensor muscle on the recovery of gait symmetry and walking capacity in patients starting in the subacute phase after stroke. Methods. Forty inpatient participants (≤31 days after stroke) were randomized to MFES gait training (experimental group) or conventional gait training (control group). Gait training was delivered in 30-minute sessions each workday. Feasibility was determined by adherence (≥75% sessions) and satisfaction with gait training (score ≥7 out of 10). Primary outcome for efficacy was step length symmetry. Secondary outcomes included other spatiotemporal gait parameters and walking capacity (Functional Gait Assessment and 10-Meter Walk Test). Linear mixed models estimated treatment effect postintervention and at 3-month follow-up. Results. Thirty-seven participants completed the study protocol (19 experimental group participants). Feasibility was confirmed by good adherence (90% of the participants) and participant satisfaction (median score 8). Both groups improved on all outcomes over time. No significant group differences in recovery were found for any outcome. Conclusions. MFES gait training is feasible early after stroke, but MFES efficacy for improving step length symmetry, other spatiotemporal gait parameters, or walking capacity could not be demonstrated. Trial Registration. Netherlands Trial Register (NTR4762).


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215755
Author(s):  
Petr Waldauf ◽  
Natália Hrušková ◽  
Barbora Blahutova ◽  
Jan Gojda ◽  
Tomáš Urban ◽  
...  

PurposeFunctional electrical stimulation-assisted cycle ergometry (FESCE) enables in-bed leg exercise independently of patients’ volition. We hypothesised that early use of FESCE-based progressive mobility programme improves physical function in survivors of critical care after 6 months.MethodsWe enrolled mechanically ventilated adults estimated to need >7 days of intensive care unit (ICU) stay into an assessor-blinded single centre randomised controlled trial to receive either FESCE-based protocolised or standard rehabilitation that continued up to day 28 or ICU discharge.ResultsWe randomised in 1:1 ratio 150 patients (age 61±15 years, Acute Physiology and Chronic Health Evaluation II 21±7) at a median of 21 (IQR 19–43) hours after admission to ICU. Mean rehabilitation duration of rehabilitation delivered to intervention versus control group was 82 (IQR 66–97) versus 53 (IQR 50–57) min per treatment day, p<0.001. At 6 months 42 (56%) and 46 (61%) patients in interventional and control groups, respectively, were alive and available to follow-up (81.5% of prespecified sample size). Their Physical Component Summary of SF-36 (primary outcome) was not different at 6 months (50 (IQR 21–69) vs 49 (IQR 26–77); p=0.26). At ICU discharge, there were no differences in the ICU length of stay, functional performance, rectus femoris cross-sectional diameter or muscle power despite the daily nitrogen balance was being 0.6 (95% CI 0.2 to 1.0; p=0.004) gN/m2 less negative in the intervention group.ConclusionEarly delivery of FESCE-based protocolised rehabilitation to ICU patients does not improve physical functioning at 6 months in survivors.Trial registration numberNCT02864745.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 319-331 ◽  
Author(s):  
Stefan Bauersachs ◽  
Susanne E Ulbrich ◽  
Karin Gross ◽  
Susanne E M Schmidt ◽  
Heinrich H D Meyer ◽  
...  

The endometrium plays a central role among the reproductive tissues in the context of early embryo–maternal communication and pregnancy. This study investigated transcriptome profiles of endometrium samples from day 18 pregnant vs non-pregnant heifers to get insight into the molecular mechanisms involved in conditioning the endometrium for embryo attachment and implantation. Using a combination of subtracted cDNA libraries and cDNA array hybridisation, 109 mRNAs with at least twofold higher abundance in endometrium of pregnant animals and 70 mRNAs with higher levels in the control group were identified. Among the mRNAs with higher abundance in pregnant animals, at least 41 are already described as induced by interferons. In addition, transcript levels of many new candidate genes involved in the regulation of transcription, cell adhesion, modulation of the maternal immune system and endometrial remodelling were found to be increased. The different expression level was confirmed with real-time PCR for nine genes. Localisation of mRNA expression in the endometrium was shown byin situhybridisation forAGRN,LGALS3BP,LGALS9,USP18,PARP12andBST2. A comparison with similar studies in humans, mice, and revealed species-specific and common molecular markers of uterine receptivity.


1961 ◽  
Vol 38 (3) ◽  
pp. 579-593
Author(s):  
ROBERT K. JOSEPHSON

1. Electrical pulses (amplitude -0.05 to -15 mV.; duration 20-120 msec.) have been recorded from the stolon of Cordylophora lacustris following stimulation. These pulses are propagated with an average velocity of 2.7 cm./sec. at 22° C. 2. Brief electric shocks of little more than threshold intensity can evoke bursts of pulses. The number of pulses in a burst increases with stimulus intensity, but the shape and size of individual pulses do not. 3. Repetitive stimulation causes facilitation of both size of single pulses and number of pulses in a burst. Refractory period, if present, is variable. The minimum interval between two pulses is about 200 msec. 4. Mechanical stimulation evokes pulses identical to those evoked by electrical stimulation. 5. The greater the number of pulses recorded in the stolon near a polyp, the greater and faster is the contraction of that polyp. 6. The number of pulses, but not their individual sizes, decreases with increasing distance from the point of stimulation. 7. It is concluded that conduction in the stolon and the electrical pulses are due to nervous activity and that the conducting system is a network having interneural junctions which sometimes require to be facilitated.


2021 ◽  
pp. 026921552110709
Author(s):  
Telma Cristina Fontes Cerqueira ◽  
Manoel Luiz de Cerqueira Neto ◽  
Lucas de Assis Pereira Cacau ◽  
Amaro Afrânio de Araújo Filho ◽  
Géssica Uruga Oliveira ◽  
...  

Objective To evaluate the effects of neuromuscular electrical stimulation on functional capacity of patients in the immediate postoperative period of cardiac surgery. Design A prospective, randomized controlled trial. Setting A cardiac surgery specialist hospital in Aracaju, Sergipe, Brazil. Subjects: Patients in the postoperative period of cardiac surgery. Intervention The control group received the conventional physiotherapy and the intervention group received neuromuscular electrical stimulation of the rectus femoris and gastrocnemius muscles bilaterally, applied for 60 min, twice a day for up to 10 sessions per patient, in the immediate postoperative period until postoperative day 5. Main measures The primary outcome was the distance walked, which was evaluated using the 6-min walk test on postoperative day 5. Secondary outcomes were gait speed, lactate levels, muscle strength, electromyographic activity of the rectus femoris and Functional Independence Measure, some of them evaluated on preoperative and postoperative period. Results Of 132 eligible patients, 88 patients were included and randomly allocated in two groups, and 45 patients were included in the analysis. No significant difference was found on the distance walked ( p = 0.650) between patients allocated in intervention group (239.06 ± 88.55) and control group (254.43 ± 116.67) as well as gait speed ( p = 0.363), lactate levels ( p = 0.302), knee extensor strength ( p = 0.117), handgrip strength ( p = 0.882), global muscle strength ( p = 0.104), electromyographic activity ( p = 0.179) and Functional Independence Measure ( p = 0.059). Conclusions Although the effects are still uncertain, the use of neuromuscular electrical stimulation carried out in five days didn't present any benefit on functional capacity of patients in the immediate postoperative period of cardiac surgery.


2018 ◽  
Vol 4 (3-4) ◽  
pp. 198-207 ◽  
Author(s):  
Sónia Chan ◽  
Sérgio Ferreira ◽  
Bruno Ramos ◽  
Maria João Santos ◽  
Luís Carlos Matos ◽  
...  

Background/Aims: Acupuncture and moxibustion, when used together, have act mechanically and thermally on treated reflexological areas. The main goal of this work was to evaluate the effects of acupuncture and moxibustion on the electrophysiological properties of the ulnar nerve. Methods: Electrical stimulation was applied to the ulnar nerve above the epi­condyle of 28 volunteers. A 20-V potential was applied, and after each 10 impulses it was increased by 10 V, up to a maximum of 80 V. At 20 and 80 V, the participants were asked to rate the discomfort from 0 to 10 on a Numeric Rating Scale for pain. After the first stimulation and data collection, the control group rested for 6 min, while the intervention group was submitted to acupuncture and moxibustion on Lingdao (HT 4). Following this period of time, a second electrical stimulation was performed on both groups. Results: The discomfort was greater in the intervention group during the second stimulation. The stimulus required to achieve the maximum amplitude decreased, but the changes were only statistically significant in the intervention group (p = 0.006). An increase in latency and a decrease in reaction velocity were noticed between the first and the second stimulation for both groups; however, only the control group presented statistically significant differences (p = 0.018 and p = 0.022, respectively). Conclusions: Acupuncture and moxibustion on HT 4 increased the electrical sensitivity, decreased the stimulus intensity to achieve the maximum amplitude, and avoided a significant increase in latency and decrease in reaction velocity in two consecutive electrical stimulations.


2018 ◽  
Vol 597 (2) ◽  
pp. 449-466 ◽  
Author(s):  
Sanghee Park ◽  
Kristen D. Turner ◽  
Donghai Zheng ◽  
Jeffrey J. Brault ◽  
Kai Zou ◽  
...  

2009 ◽  
Vol 101 (4) ◽  
pp. 1921-1931 ◽  
Author(s):  
Vladyslav V. Vyazovskiy ◽  
Ugo Faraguna ◽  
Chiara Cirelli ◽  
Giulio Tononi

In humans, non-rapid eye movement (NREM) sleep slow waves occur not only spontaneously but can also be induced by transcranial magnetic stimulation. Here we investigated whether slow waves can also be induced by intracortical electrical stimulation during sleep in rats. Intracortical local field potential (LFP) recordings were obtained from several cortical locations while the frontal or the parietal area was stimulated intracortically with brief (0.1 ms) electrical pulses. Recordings were performed in early sleep (1st 2–3 h after light onset) and late sleep (6–8 h after light onset). The stimuli reliably triggered LFP potentials that were visually indistinguishable from naturally occurring slow waves. The induced slow waves shared the following features with spontaneous slow waves: they were followed by spindling activity in the same frequency range (∼15 Hz) as spontaneously occurring sleep spindles; they propagated through the neocortex from the area of the stimulation; and compared with late sleep, waves triggered during early sleep were larger, had steeper slopes and fewer multipeaks. Peristimulus background spontaneous activity had a profound influence on the amplitude of the induced slow waves: they were virtually absent if the stimulus was delivered immediately after the spontaneous slow wave. These results show that in the rat a volley of electrical activity that is sufficiently strong to excite and recruit a large cortical neuronal population is capable of inducing slow waves during natural sleep.


2021 ◽  
Vol 11 (21) ◽  
pp. 10436
Author(s):  
Taku Fukushima ◽  
Miho Takata ◽  
Ayano Kato ◽  
Takayuki Uchida ◽  
Takeshi Nikawa ◽  
...  

Exercise has beneficial effects on human health and is affected by two different pathways; motoneuron and endocrine. For the advancement of exercise research, in vitro exercise models are essential. We established two in vitro exercise models using C2C12 myotubes; EPS (electrical pulse stimulation) for a motoneuron model and clenbuterol, a specific β2 adrenergic receptor agonist, treatment for an endocrine model. For clenbuterol treatment, we found that Ppargc1a was induced only in low glucose media (1 mg/mL) using a 1-h treatment of 30 ng/mL clenbuterol. Global transcriptional changes of clenbuterol treatment were analyzed by RNA-seq and gene ontology analyses and indicated that mitogenesis and the PI3K-Akt pathway were enhanced, which is consistent with the effects of exercise. Cxcl1 and Cxcl5 were identified as candidate myokines induced by adrenaline. As for the EPS model, we compared 1 Hz of 1-pulse EPS and 1 Hz of 10-pulse EPS for 24 h and determined Myh gene expressions. Ten-pulse EPS induced higher Myh2 and Myh7 expression. Global transcriptional changes of 10-pulse EPS were also analyzed using RNA-seq, and gene ontology analyses indicated that CaMK signaling and hypertrophy pathways were enhanced, which is also consistent with the effects of exercise. In this paper, we provided two transcriptome results of in vitro exercise models and these databases will contribute to advances in exercise research.


Sign in / Sign up

Export Citation Format

Share Document