scholarly journals Application of Three Deep Learning Schemes Into Oceanic Eddy Detection

2021 ◽  
Vol 8 ◽  
Author(s):  
Guangjun Xu ◽  
Wenhong Xie ◽  
Changming Dong ◽  
Xiaoqian Gao

Recent years have witnessed the increase in applications of artificial intelligence (AI) into the detection of oceanic features. Oceanic eddies, ubiquitous in the global ocean, are important in the transport of materials and energy. A series of eddy detection schemes based on oceanic dynamics have been developed while the AI-based eddy identification scheme starts to be reported in literature. In the present study, to find out applicable AI-based schemes in eddy detection, three AI-based algorithms are employed in eddy detection, including the pyramid scene parsing network (PSPNet) algorithm, the DeepLabV3+ algorithm and the bilateral segmentation network (BiSeNet) algorithm. To justify the AI-based eddy detection schemes, the results are compared with one dynamic-based eddy detection method. It is found that more eddies are identified using the three AI-based methods. The three methods’ results are compared in terms of the numbers, sizes and lifetimes of detected eddies. In terms of eddy numbers, the PSPNet algorithm identifies the largest number of ocean eddies among the three AI-based methods. In terms of eddy sizes, the BiSeNet can find more large-scale eddies than the two other methods, because the Spatial Path is introduced into the algorithm to avoid destroying the eddy edge information. Regarding eddy lifetimes, the DeepLabV3+ cannot track longer lifetimes of ocean eddies.

2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


2021 ◽  
Author(s):  
Angelina Cassianides ◽  
Camillie Lique ◽  
Anton Korosov

<p>In the global ocean, mesoscale eddies are routinely observed from satellite observation. In the Arctic Ocean, however, their observation is impeded by the presence of sea ice, although there is a growing recognition that eddy may be important for the evolution of the sea ice cover. In this talk, we will present a new method of surface ocean eddy detection based on their signature in sea ice vorticity retrieved from Synthetic Aperture Radar (SAR) images. A combination of Feature Tracking and Pattern Matching algorithm is used to compute the sea ice drift from pairs of SAR images. We will mostly focus on the case of one eddy in October 2017 in the marginal ice zone of the Canadian Basin, which was sampled by mooring observations, allowing a detailed description of its characteristics. Although the eddy could not be identified by visual inspection of the SAR images, its signature is revealed as a dipole anomaly in sea ice vorticity, which suggests that the eddy is a dipole composed of a cyclone and an anticyclone, with a horizontal scale of 80-100 km and persisted over a week. We will also discuss the relative contributions of the wind and the surface current to the sea ice vorticity. We anticipate that the robustness of our method will allow us to detect more eddies as more SAR observations become available in the future.</p>


2010 ◽  
Vol 7 (3) ◽  
pp. 3393-3451 ◽  
Author(s):  
D. Iudicone ◽  
I. Stendardo ◽  
O. Aumont ◽  
K. B. Rodgers ◽  
G. Madec ◽  
...  

Abstract. A watermass-based framework is presented for a quantitative understanding of the processes controlling the cycling of carbon in the Southern Ocean. The approach is developed using a model simulation of the global carbon transports within the ocean and with the atmosphere. It is shown how the watermass framework sheds light on the interplay between biology, air-sea gas exchange, and internal ocean transport including diapycnal processes, and the way in which this interplay controls the large-scale ocean-atmosphere carbon exchange. The simulated pre-industrial regional patterns of DIC distribution and the global distribution of the pre-industrial air-sea CO2 fluxes compare well with other model results and with results from an ocean inversion method. The main differences are found in the Southern Ocean where the model presents a stronger CO2 outgassing south of the polar front, a result of the upwelling of DIC-rich deep waters into the surface layer. North of the subantarctic front the typical temperature-driven solubility effect produces a net ingassing of CO2. The biological controls on surface CO2 fluxes through primary production is generally smaller than the temperature effect on solubility. Novel to this study is also a Lagrangian trajectory analysis of the meridional transport of DIC. The analysis allows to evaluate the contribution of separate branches of the global thermohaline circulation (identified by watermasses) to the vertical distribution of DIC throughout the Southern Ocean and towards the global ocean. The most important new result is that the overturning associated with Subantarctic Mode Waters sustains a northward net transport of DIC (15.7×107 mol/s across 30° S). This new finding, which has also relevant implications on the prediction of anthropogenic carbon redistribution, results from the specific mechanism of SAMW formation and its source waters whose consequences on tracer transports are analyzed for the first time in this study.


2020 ◽  
Vol 50 (8) ◽  
pp. 2203-2226
Author(s):  
Henri F. Drake ◽  
Raffaele Ferrari ◽  
Jörn Callies

AbstractThe emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories.


2008 ◽  
Vol 38 (9) ◽  
pp. 1931-1948 ◽  
Author(s):  
D. Stammer ◽  
S. Park ◽  
A. Köhl ◽  
R. Lukas ◽  
F. Santiago-Mandujano

Abstract Results from Estimating the Circulation and Climate of the Ocean (ECCO)–Scripps Institution of Oceanography (SIO) global ocean state estimate, available over the 11-yr period 1992 through 2002, are compared with independent observations available at the Hawaii Ocean time series station ALOHA. The comparison shows that at this position, the estimated temporal variability has some skill in simulating observed ocean variability and that the quality of future syntheses could benefit from additional information available from the Argo network and from the time series observations themselves. On a decadal time scale, the influence radius of the station ALOHA T–S time series covers large parts of the tropical and subtropical Pacific Ocean and reaches even into the Indian Ocean through the Indonesian Throughflow. Estimated changes in sea surface height (SSH) result largely from thermosteric changes; however, nonsteric (barotropic) variations on the order of 1–2 cm also contribute to SSH changes at station ALOHA. Moreover, changes of similar magnitude can be caused by changes in the salinity field because of a quasi-biennial oscillation in the horizontal flow structure and heaving of the mean salinity structure on seasonal and interannual time scales. The adjoint modeling framework confirms westward-propagating Rossby waves (due to wind forcing) and subduction of water-mass anomalies (due to surface buoyancy forcing) as the primary mechanisms leading to observed changes of T–S structures at station ALOHA. Specifically, the analysis identifies surface freshwater fluxes along the wintertime outcrop of intermediate waters as a primary cause for salinity changes at station ALOHA and wind stress forcing east of the station position as another forcing mechanism of salinity variations around the Hawaiian Archipelago.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1067-1090 ◽  
Author(s):  
Marie-Isabelle Pujol ◽  
Yannice Faugère ◽  
Guillaume Taburet ◽  
Stéphanie Dupuy ◽  
Camille Pelloquin ◽  
...  

Abstract. The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features.An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than  ∼  250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.


Sign in / Sign up

Export Citation Format

Share Document