scholarly journals Species That Fly at a Higher Game: Patterns of Deep–Water Emergence Along the Chilean Coast, Including a Global Review of the Phenomenon

2021 ◽  
Vol 8 ◽  
Author(s):  
Vreni Häussermann ◽  
Stacy Anushka Ballyram ◽  
Günter Försterra ◽  
Claudio Cornejo ◽  
Christian M. Ibáñez ◽  
...  

Deep-water emergence (DWE) is the phenomenon where marine species normally found at great depths (i.e., below 200 m), can be found locally occurring in significantly shallower depths (i.e., euphotic zone, usually shallower than 50 m). Although this phenomenon has been previously mentioned and deep-water emergent species have been described from the fjord regions of North America, Scandinavia, and New Zealand, local or global hypotheses to explain this phenomenon have rarely been tested. This publication includes the first literature review on DWE. Our knowledge of distribution patterns of Chilean marine invertebrates is still very scarce, especially from habitats below SCUBA diving depth. In our databases, we have been gathering occurrence data of more than 1000 invertebrate species along the Chilean coast, both from our research and from the literature. We also distributed a list of 50 common and easily in situ-identifiable species among biologically experienced sport divers along the Chilean coast and recorded their sighting reports. Among other findings, the analysis of the data revealed patterns from 28 species and six genera with similar longitudinal and bathymetric distribution along the entire Chilean coast: along the Chilean coast these species are typically restricted to deep water (>200 m) but only in some parts of Chilean Patagonia (>39°S–56°S), the same species are also common to locally abundant at diving depths (<30 m). We found 28 of these ‘deep’ species present in shallow-water of North Patagonia, 32 in Central Patagonia and 12 in South Patagonia. The species belong to the phyla Cnidaria (six species), Mollusca (four species), Arthropoda (two species) and Echinodermata (16 species). We ran several analyses comparing depth distribution between biogeographic regions (two-way ANOVA) and comparing abiotic parameters of shallow and deep sites to search for correlations of distribution with environmental variables (Generalized Linear Models). For the analyses, we used a total of 3328 presence points and 10635 absence points. The results of the statistical analysis of the parameters used, however, did not reveal conclusive results. We summarize cases from other fjord regions and discuss hypotheses of DWE from the literature for Chilean Patagonia.

2020 ◽  
Vol 8 (9) ◽  
pp. 661
Author(s):  
Davide Asnicar ◽  
Costanza Cappelli ◽  
Ahmad Safuan Sallehuddin ◽  
Nur Atiqah Maznan ◽  
Maria Gabriella Marin

Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone.


2020 ◽  
Vol 129 (4) ◽  
pp. 875-887
Author(s):  
Rebecca J Lakin ◽  
Paul M Barrett ◽  
Colin Stevenson ◽  
Robert J Thomas ◽  
Matthew A Wills

Abstract Relationships between distribution patterns and body size have been documented in many endothermic taxa. However, the evidence for these trends in ectotherms generally is equivocal, and there have been no studies of effects in crocodylians specifically. Here, we examine the relationship between latitudinal distribution and body mass in 20 extant species of crocodylians, as well as the relationships between seven important reproductive variables. Using phylogenetically independent contrasts to inform generalized linear models, we provide the first evidence of a latitudinal effect on adult female body mass in crocodylians. In addition, we explore the relationships between reproductive variables including egg mass, hatchling mass and clutch size. We report no correlation between egg mass and clutch size, upholding previously reported within-species trends. We also find no evidence of a correlation between measures of latitudinal range and incubation temperature, contrasting with the trends found in turtles.


1991 ◽  
Vol 159 (1) ◽  
pp. 473-487 ◽  
Author(s):  
ELIZABETH DAHLHOFF ◽  
GEORGE N. SOMERO

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.


2014 ◽  
Vol 71 (6) ◽  
pp. 1342-1355 ◽  
Author(s):  
Xochitl Cormon ◽  
Christophe Loots ◽  
Sandrine Vaz ◽  
Youen Vermard ◽  
Paul Marchal

Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) were investigated in the North Sea. Saithe is a well-established species in the North Sea, while occurrence of the less common hake has recently increased in the area. Spatial dynamics of these two species and their potential spatial interactions were explored using binomial generalized linear models (GLM) applied to the International Bottom Trawl Survey (IBTS) data from 1991 to 2012. Models included different types of variables: (i) abiotic variables including sediment types, temperature, and bathymetry; (ii) biotic variables including potential competitors and potential preys presence; and (iii) spatial variables. The models were reduced and used to predict and map probable habitats of saithe, hake but also, for the first time in the North Sea, the distribution of the spatial overlap between these two species. Changes in distribution patterns of these two species and of their overlap were also investigated by comparing species’ presence and overlap probabilities predicted over an early (1991–1996) and a late period (2007–2012). The results show an increase in the probability over time of the overlap between saithe and hake along with an expansion towards the southwest and Scottish waters. These shifts follow trends observed in temperature data and might be indirectly induced by climate changes. Saithe, hake, and their overlap are positively influenced by potential preys and/or competitors, which confirms spatial co-occurrence of the species concerned and leads to the questions of predator–prey relationships and competition. Finally, the present study provides robust predictions concerning the spatial distribution of saithe, hake, and of their overlap in the North Sea, which may be of interest for fishery managers.


Author(s):  
Guangyi Fan ◽  
Jianwei Chen ◽  
Tao Jin ◽  
Chengcheng Shi ◽  
Xiao Du ◽  
...  

With the continuing development of sequencing technology, genomics has been applied in a variety of biological research areas. In particular, the application of genomics to marine species, which boast a high diversity, promises great scientific and industrial potential. Significant progress has been made in marine genomics especially over the past few years. Consequently, BGI, leveraging its prominent contributions in genomics research, established BGI-Qingdao, an institute specifically aimed at exploring marine genomics. In order to accelerate marine genomics research and related applications, BGI-Qingdao initiated the International Conference on Genomics of the Ocean (ICG-Ocean) to develop international collaborations and establish a focused and coherent global research plan. Last year, the first ICG-Ocean conference was held in Qingdao, China, during which 47 scientists in marine genomics from all over the world reported on their research progress to an audience of about 300 attendees. This year, we would like to build on that success, drafting a report on marine genomics to draw global attention to marine genomics. We summarized the recent progress, proposed future directions, and we would like to enable additional profound insights on marine genomics. Similar to the annual report on plant and fungal research by Kew Gardens, and the White Paper of ethical issues on experimental animals, we hope our first report on marine genomics can provide some useful insights for researchers, funding agencies as well as industry, and that future versions will expand upon the foundation established here in both breadth and depth of knowledge.This report summarizes the recent progress in marine genomics in six parts including: marine microorganisms, marine fungi, marine algae and plants, marine invertebrates, marine vertebrates and genomics-based applications.


2020 ◽  
Vol 74 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Wangquan Ye ◽  
Jinjia Guo ◽  
Nan Li ◽  
Fujun Qi ◽  
Kai Cheng ◽  
...  

Depth profiling investigation plays an important role in studying the dynamic processes of the ocean. In this paper, a newly developed hyphenated underwater system based on multi-optical spectrometry is introduced and used to measure seawater spectra at different depths with the aid of a remotely operated vehicle (ROV). The hyphenated system consists of two independent compact deep-sea spectral instruments, a deep ocean compact autonomous Raman spectrometer and a compact underwater laser-induced breakdown spectroscopy system for sea applications (LIBSea). The former was used to take both Raman scattering and fluorescence of seawater, and the LIBS signal could be recorded with the LIBSea. The first sea trial of the developed system was taken place in the Bismarck Sea, Papua New Guinea, in June 2015. Over 4000 multi-optical spectra had been captured up to the diving depth about 1800 m at maximum. The depth profiles of some ocean parameters were extracted from the captured joint Raman–fluorescence and LIBS spectra with a depth resolution of 1 m. The concentrations of [Formula: see text] and the water temperatures were measured using Raman spectra. The fluorescence intensities from both colored dissolved organic matter (CDOM) and chlorophyll were found to be varied in the euphotic zone. With LIBS spectra, the depth profiles of metallic elements were also obtained. The normalized intensity of atomic line Ca(I) extracted from LIBS spectra raised around the depth of 1600 m, similar to the depth profile of CDOM. This phenomenon might be caused by the nonbuoyant hydrothermal plumes. It is worth mentioning that this is the first time Raman and LIBS spectroscopy have been applied simultaneously to the deep-sea in situ investigations.


1997 ◽  
Vol 48 (8) ◽  
pp. 993 ◽  
Author(s):  
J. C. Groeneveld ◽  
A. C. Cockcroft

An experiment to investigate the potential of a trap-fishery for deep-water rock lobster Palinurus delagoae was conducted off the east coast of South Africa between 1994 and 1996. The 75–425 m depth interval between 27°S and 32°S was stratified according to depth and latitude, and three regions (North, Central and South) were sampled systematically over the three years. Sampling by commercial vessels operating long-lines and traps included an experimental phase (fixed fishing positions) and a commercial phase (no restriction on fishing location). Generalized linear models were used to investigate the influence of year, region, sampling phase, month and soak time. Sampling phase was significant, with traps set during the commercial phase catching more than those set in the experimental phase. The effect of soak time on catch rates was not significant. The almost-50% decrease in the combined abundance index combined with a marked decrease in mean lobster size over the study period suggests a relatively low fisheries potential for this species in South African waters; this may be attributable to the relative scarcity of suitable habitat in the area.


2009 ◽  
Vol 276 (1667) ◽  
pp. 2667-2674 ◽  
Author(s):  
Paul M. Barrett ◽  
Alistair J. McGowan ◽  
Victoria Page

Palaeobiodiversity analysis underpins macroevolutionary investigations, allowing identification of mass extinctions and adaptive radiations. However, recent large-scale studies on marine invertebrates indicate that geological factors play a central role in moulding the shape of diversity curves and imply that many features of such curves represent sampling artefacts, rather than genuine evolutionary events. In order to test whether similar biases affect diversity estimates for terrestrial taxa, we compiled genus-richness estimates for three Mesozoic dinosaur clades (Ornithischia, Sauropodomorpha and Theropoda). Linear models of expected genus richness were constructed for each clade, using the number of dinosaur-bearing formations available through time as a proxy for the amount of fossiliferous rock outcrop. Modelled diversity estimates were then compared with observed patterns. Strong statistically robust correlations demonstrate that almost all aspects of ornithischian and theropod diversity curves can be explained by geological megabiases, whereas the sauropodomorph record diverges from modelled predictions and may be a stronger contender for identifying evolutionary signals. In contrast to other recent studies, we identify a marked decline in dinosaur genus richness during the closing stages of the Cretaceous Period, indicating that the clade decreased in diversity for several million years prior to the final extinction of non-avian dinosaurs at the Cretaceous–Palaeocene boundary.


Koedoe ◽  
2012 ◽  
Vol 54 (1) ◽  
Author(s):  
George J. Chirima ◽  
Norman Owen-Smith ◽  
Barend F.N. Erasmus

Documenting current species distribution patterns and their association with habitat types is important as a basis for assessing future range shifts in response to climate change or other influences. We used the adaptive local convex hull (a-LoCoH) method to map distribution ranges of 12 ungulate species within the Kruger National Park (KNP) based on locations recorded during aerial surveys (1980–1993). We used log-linear models to identify changes in regional distribution patterns and chi-square tests to determine shifts in habitat occupation over this period. We compared observed patterns with earlier, more subjectively derived distribution maps for these species. Zebra, wildebeest and giraffe distributions shifted towards the far northern section of the KNP, whilst buffalo and kudu showed proportional declines in the north. Sable antelope distribution contracted most in the north, whilst tsessebe, eland and roan antelope distributions showed no shifts. Warthog and waterbuck contracted in the central and northern regions, respectively. The distribution of impala did not change. Compared with earlier distributions, impala, zebra, buffalo, warthog and waterbuck had become less strongly concentrated along rivers. Wildebeest, zebra, sable antelope and tsessebe had become less prevalent in localities west of the central region. Concerning habitat occupation, the majority of grazers showed a concentration on basaltic substrates, whilst sable antelope favoured mopane-dominated woodland and sour bushveld on granite. Buffalo showed no strong preference for any habitats and waterbuck were concentrated along rivers. Although widespread, impala were absent from sections of mopane shrubveld and sandveld. Kudu and giraffe were widespread through most habitats, but with a lesser prevalence in northern mopane-dominated habitats. Documented distribution shifts appeared to be related to the completion of the western boundary fence and widened provision of surface water within the park. Conservation implications: The objectively recorded distribution patterns provide a foundation for assessing future changes in distribution that may take place in response to climatic shifts or other influences.


Sign in / Sign up

Export Citation Format

Share Document