scholarly journals Fine-Scale Mapping of Mega-Epibenthic Communities and Their Patch Characteristics on Two New Zealand Seamounts

2021 ◽  
Vol 8 ◽  
Author(s):  
Savannah L. Goode ◽  
Ashley A. Rowden ◽  
David A. Bowden ◽  
Malcolm R. Clark ◽  
Fabrice Stephenson

Seamounts are common features of the deep seafloor that are often associated with aggregations of mega-epibenthic fauna, including deep-sea corals and sponges. Globally, many seamounts also host abundant fish stocks, supporting commercial bottom trawl fisheries that impact non-target benthic species through damage and/or removal of these non-target species. However, the effects of bottom trawling on seamount benthic communities, as well as their recovery potential, will vary over the total seamount area because of differences in within seamount habitat and community structure. It is therefore important to understand fine-scale community dynamics, community patch characteristics, and the environmental drivers contributing to these patterns to improve habitat mapping efforts on seamounts and to determine the potential for benthic communities on seamounts to recover from fishing disturbances. Here we analysed the structure and distribution of mega-epibenthic communities on two New Zealand seamounts with different physical environments to determine which environmental variables best correlated with variation in community structure within each seamount. We used the identified environmental variables to predict the distribution of communities beyond the sampled areas, then described the spatial patterns and patch characteristics of the predicted community distributions. We found the environmental variables that best explained variations in community structure differed between the seamounts and at different spatial scales. These differences were reflected in the distribution models: communities on one seamount were predicted to form bands with depth, while on the other seamount communities varied mostly with broadscale aspect and the presence of small pinnacles. The number and size of community patches, inter-patch distances, and patch connectedness were found to differ both within and between seamounts. These types of analyses and results can be used to inform the spatial management of seamount ecosystems.

2019 ◽  
Author(s):  
Casper Kraan ◽  
Barry L. Greenfield ◽  
Simon F. Thrush

Abstract. Understanding how the plants and animals that live in the seafloor vary in their spatial patterns of diversity and abundance is fundamental to gaining insight in the role of biodiversity in maintaining ecosystem functioning in coastal ecosystems, as well as advancing the modelling of species distributions under realistic assumptions. Yet, it is virtually unknown how the relationships between abundance patterns and different biotic and environmental processes change depending on spatial scales, which is mainly due to a lack of data. Within the project Spatial Organization of Species Distributions: Hierarchical and Scale-Dependent Patterns and Processes in Coastal Seascapes at the National Institute for Water and Atmospheric Research (NIWA) in New Zealand we collected multi-scale and high-resolution data on macrobenthic biodiversity. We found 146 species, i.e. bivalves, polychaetes and crustaceans (> 500 μm) that live hidden in marine sandflats, and collected point measurements of important environmental variables (sediment grain-size distributions, chlorophyll a concentration, and visible sandflat parameters) in three large intertidal Harbours (Kaipara, Tauranga and Manukau). In each Harbour we sampled 400 points for macrobenthic community composition and abundances, as well as the full set of environmental variables. Using an elaborate sampling design, we were able to cover scales from 30 centimetres to a maximal extent of 1 km. All data and extensive metadata are available from the data publisher PANGAEA via the persistent identifier https://doi.org/10.1594/PANGAEA.903448.


2021 ◽  
Author(s):  
Campbell Murray

<p>With the possibility of deep-sea mining of marine mineral resources occurring in the near future, it is necessary to understand the potential impacts that mining may have on benthic communities. Previous simulated mining experiments have observed direct impacts of deep-sea mining (e.g., faunal mortality); however, indirect impacts of sedimentation were not understood. In New Zealand, there has been interest in mining the seabed of the Chatham Rise, but mining consents have been refused, partly due to the uncertainties of sedimentation impacts on benthic communities. A disturbance experiment conducted in 2019 on the Rise used a modified agricultural plough designed to create a sediment cloud that could result from mining. This disturbance was used to assess the resilience of benthic communities to sedimentation in a proposed future mining area. Macrofaunal and sediment samples were collected with a multicorer before, immediately after and one year after disturbance to assess the impact on the community and its ability to recover. Samplingevents took place in disturbed (physically run over by the plough and subjected to sedimentation) and undisturbed areas (subjected to sedimentation only) at each sampling period. Macrofaunal abundance significantly decreased in disturbed areas after disturbancebut not in undisturbed areas. However, community structure changed in both areas after disturbance; in disturbed areas this was mostly driven by changes in numerically dominant fauna, but in undisturbed areas by the more sensitive fauna which may provide an early warning sign for further changes under increased sedimentation. One year after disturbance, community structure had recovered in both areas. Abundance-based community structure correlated most strongly with C:N molar ratios in the sediment which increased after disturbance. Ecosystem function was measured by sediment community oxygen consumption (SCOC) which increased similarly in both disturbed and undisturbed areas after disturbance; SCOC may be a more sensitive measure than community structure in assessing sedimentation impacts. No correlations were found between SCOC and macrofaunal abundance, biomass, diversity or bacterial abundance. The results of this research are useful for managing the impacts of industries where sedimentation is an issue, such as for bottom trawl fisheries and deep-sea mining. The results highlight the importance of leaving unmined patches of seabed adjacent to or within mined areas, to aid the recovery of macrofaunal communities subjected to mining disturbance.</p>


<em>Abstract</em>.—Community ecology increasingly seeks to integrate the influences of regional and historical processes with species interactions within local habitats. This broadened perspective is largely based on comparative approaches that employ “natural experiments” to identify factors shaping community structure. Because coastal rivers are separated from one another by insurmountable barriers (oceans or land), freshwater fishes are particularly well suited for comparative analyses of factors that influence fish community organization. In this chapter, we review how this comparative approach shed light on large-scale biodiversity gradients, community saturation, community convergence, density compensation, and the role of intrinsic and extrinsic factors in community dynamics. The main factors (e.g., river mouth discharge and history) empirically related to species richness of a river are well identified, and metacommunity ecology provides a fruitful conceptual framework for understanding how regional (river) species richness translates into local species richness. Much work remains to identify factors explaining differences among whole river basin assemblages with regard to ecological traits (e.g., trophic status and life history) composition and to assess whether trait-related environmental and biotic local filters act similarly over large spatial scales. One important conclusion that can be drawn from the studies reviewed here is that history cannot be neglected whatever the scale of investigation (global, river, or site). A second conclusion is that historical effects are not strong enough to blur the occurrence of qualitatively repeatable patterns of community structure over large spatial scale, which is encouraging because it suggests development of general predictive models of community structure is an attainable goal.


2008 ◽  
Vol 59 (6) ◽  
pp. 477 ◽  
Author(s):  
Laura Entrambasaguas ◽  
Ángel Pérez-Ruzafa ◽  
Jose A. García-Charton ◽  
Ben Stobart ◽  
Juan José Bacallado

The analysis of spatial variability in distribution and abundance of echinoderms may help in identifying the range of processes that can explain the observed patterns of this important component of benthic communities. The distribution and abundance of the echinoderm assemblage inhabiting the shallow rocky reefs at the Cabo Verde archipelago (where few studies other than descriptive ones have been performed until now) was quantified at three spatial scales (among islands, between locations within islands, and among replicates), at two depth strata, and related to fine-scale variation of habitat structure. Total echinoderm abundance and the abundance of the sea urchins Diadema antillarum and Eucidaris tribuloides, and the holothurian Euapta lappa were heterogeneous at the largest considered scale. Most species and habitat descriptors exhibited spatial variability at finer scales. There were significant relationships between habitat architecture and depth and both assemblage parameters and species abundances. Although the effects of habitat structure were species-specific, the probability of occurrence of Asteroidea, Ophiuroidea and Holothuroidea species was higher in heterogeneous habitats. Meanwhile Echinoidea and Holothuroidea species showed higher correlations to complex habitats. The observed spatial patterns are inferred to reflect behavioural responses to fine-scale microhabitat complexity, as well as broad-scale oceanic variables and recruitment dynamics.


2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Eduardo Hernández-Miranda ◽  
Romina Estrada ◽  
Poliana Strange ◽  
Rodrigo Veas ◽  
M. Cristina Krautz ◽  
...  

Abstract Background It is known that aquaculture may produce negative environmental effects on marine ecosystems. Southern Chile is one of the most important salmon and mussel-producing areas in the world. Here we assess the ecological status of benthic communities near farming centers in Caucahue Channel, Chiloe, which has been used intensely for salmon and mussel production for 30 years. Methods The macrofauna, sediments and water column were characterized at distances of 5 to 100 m from three salmon and three mussel-producing centers. Information was also obtained from reference sites 500 to 3000 m from these aquaculture farms. The macrofauna and environmental conditions during winter were analyzed using uni- and multivariate analysis and the AZTI Marine Biotic Index (AMBI) as an indicator of benthic community condition. Results (i) There is a high degree of spatial dissimilarity in macrofauna and environmental variables among sampling sites and types of environments (far from or near farming centers) and between the northern and southern areas of the channel; (ii) sediment structure (mean grain size and percentage of total organic matter) correlated with the observed dissimilarities in macrofauna communities; and (iii) the level of perturbation according to AMBI was heterogeneous, with sites in the undisturbed/normal range to moderately disturbed/polluted. Conclusions We found a high spatial dissimilarity in benthic macrofauna and environmental variables among sampling sites, environmental types and between the northern and southern areas of the channel. AMBI and multivariate community-environment analysis are useful tools to define the level of perturbation of a geographic area at different spatial scales, using all the ecological information from each sample and replicates.


2020 ◽  
Vol 642 ◽  
pp. 21-38 ◽  
Author(s):  
C McLaverty ◽  
OR Eigaard ◽  
GE Dinesen ◽  
H Gislason ◽  
A Kokkalis ◽  
...  

Commercial dredging for blue mussels (Mytilus edulis) and oysters (Ostrea edulis, Crassostrea gigas) constitute the main bivalve fisheries in Denmark. These activities predominantly take place in Limfjorden, a large microtidal sound, and in the Inner Danish waters. Both areas are shallow, estuarine, receive high nutrient inputs from agriculture, and are of nature conservation interest (Natura 2000 sites), thus presenting challenges for an ecosystem approach to fisheries management. Using high-resolution fisheries data (~10 m), we investigated the effects of bivalve dredging on benthic communities at both local (Natura 2000 site) and regional (fishery-wide) scales. Regionally, our results showed that dredging intensity correlated with shifts in species composition and reduced community biomass. We were, however, unable to detect an effect of dredging on community density, trait richness, and trait composition. These metrics were significantly related to other environmental drivers, such as sediment organic content (negative) and mussel bed biomass (positive). At the local scale, the observed relationships between dredging, biomass, and species composition varied significantly. This occurred as dredging impacts were greater in areas that contained suitable reference conditions and experienced relatively low levels of disturbance. By contrast, communities which experienced high nutrient loading, regular anoxic events, and high natural variability were relatively unaffected by dredging. Our results therefore highlight the importance of spatial scales in fishing impact estimations. Furthermore, we demonstrate how targeted sampling, high-resolution fisheries data, and suitable reference areas can be used to detect fishery effects in coastal areas that are highly stressed by eutrophication.


2014 ◽  
Vol 16 (7) ◽  
pp. 1629-1636 ◽  
Author(s):  
M. A. Snell ◽  
P. A. Barker ◽  
B. W. J. Surridge ◽  
A. R. G. Large ◽  
J. Jonczyk ◽  
...  

Headwater streams are an important feature of the landscape, with their diversity in chlorophyll-a and community structure a function of mean antecedent conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lena A. Schallenberg ◽  
John K. Pearman ◽  
Carolyn W. Burns ◽  
Susanna A. Wood

Picocyanobacteria (Pcy) are important yet understudied components of lake foodwebs. While phylogenetic studies of isolated strains reveal a high diversity of freshwater genotypes, little is known about abiotic drivers associated with Pcy in different lakes. Due to methodological limitations, most previous studies assess potential drivers using total cell abundances as a response, with often conflicting and inconsistent results. In the present study, we explored how picocyanobacterial communities respond to environmental change using a combination of epifluorescence microscopy and community data determined using 16S rRNA gene metabarcoding. Temporal shifts in picocyanobacterial abundance, diversity and community dynamics were assessed in relation to potential environmental drivers in five contrasting lakes over 1year. Cell abundances alone were not consistently related to environmental variables across lakes. However, the addition of metabarcoding data revealed diverse picocyanobacterial communities that differed significantly between lakes, driven by environmental variables related to trophic state. Within each lake, communities were temporally dynamic and certain amplicon sequence variants (ASVs) were strongly associated with specific environmental drivers. Rapid shifts in community structure and composition were often related to environmental changes, indicating that lacustrine Pcy can persist at high abundances through collective community adaptation. These results demonstrate that a combination of microscopy and metabarcoding enables an in-depth characterisation of picocyanobacterial communities and reveals strain-specific drivers. We recommend that future studies cease referring to picocyanobacterial as one functional group and take strain specific variability into consideration.


2021 ◽  
Vol 8 ◽  
Author(s):  
Travis W. Washburn ◽  
Daniel O. B. Jones ◽  
Chih-Lin Wei ◽  
Craig R. Smith

Environmental variables such as food supply, nodule abundance, sediment characteristics, and water chemistry may influence abyssal seafloor communities and ecosystem functions at scales from meters to thousands of kilometers. Thus, knowledge of environmental variables is necessary to understand drivers of organismal distributions and community structure, and for selection of proxies for regional variations in community structure, biodiversity, and ecosystem functions. In October 2019, the Deep CCZ Biodiversity Synthesis Workshop was conducted to (i) compile recent seafloor ecosystem data from the Clarion-Clipperton Zone (CCZ), (ii) synthesize patterns of seafloor biodiversity, ecosystem functions, and potential environmental drivers across the CCZ, and (iii) assess the representativity of no-mining areas (Areas of Particular Environmental Interest, APEIs) for subregions and areas in the CCZ targeted for polymetallic nodule mining. Here we provide a compilation and summary of water column and seafloor environmental data throughout the CCZ used in the Synthesis Workshop and in many of the papers in this special volume. Bottom-water variables were relatively homogenous throughout the region while nodule abundance, sediment characteristics, seafloor topography, and particulate organic carbon flux varied across CCZ subregions and between some individual subregions and their corresponding APEIs. This suggests that additional APEIs may be needed to protect the full range of habitats and biodiversity within the CCZ.


Sign in / Sign up

Export Citation Format

Share Document