scholarly journals Distribution and Catch Rate Characteristics of Narrow-Barred Spanish Mackerel (Scomberomorus commerson) in Relation to Oceanographic Factors in the Waters Around Taiwan

2021 ◽  
Vol 8 ◽  
Author(s):  
Lu-Chi Chen ◽  
Jinn-Shing Weng ◽  
Muhamad Naimullah ◽  
Po-Yuan Hsiao ◽  
Chen-Te Tseng ◽  
...  

This study investigated the relationship of the catch rates (CRs) of Spanish mackerel (Scomberomorus commerson) with oceanographic factors in the waters around Taiwan by using high-resolution fishery and environmental data for the period 2011–2016. The investigation results revealed that trammel nets accounted for 69.79% of the total catch of S. commerson and were operated mostly in the Taiwan Strait (TS). We noted seasonal variations in the distribution of high CRs. These CRs were observed in the southwestern TS, including the waters along the southwestern coast of Taiwan and around the Penghu Islands, and extended to the Taiwan Bank during autumn; they increased in winter. To predict the spatial and temporal patterns of Spanish mackerel density and their relationship with oceanographic and spatiotemporal variables, generalized additive models were used. These models explained 48.4% of the total deviance, which was consistent with the assumed Gaussian distribution. Moreover, all variables examined were significant CR predictors (p < 0.05). Latitude and longitude were the key factors influencing the spatiotemporal distribution of S. commerson, and sea surface chlorophyll a concentration was a key oceanographic factor. Observing projected changes in El Niño/Southern Oscillation events for S. commerson revealed that CRs were higher and distributed further southward during La Niña events than during other events. We inferred that the S. commerson distribution gradually moved toward the southwest with the northeast monsoon, which was enhanced during La Niña in winter.

2015 ◽  
Vol 73 (5) ◽  
Author(s):  
Mohd Hilmi Abdullah ◽  
Mohd Razali Mahmud ◽  
Nor Ainah Amat

The El Nino/La Nina Southern Oscillation (ENSO) phenomenon indirectly provides dramatic changes to tidal that can cause floods, drought and affect various marine activities. Tidal observation data plays important role in determining the characteristic or behaviour of tide along the coastal area especially during sudden climate change such as the phenomenon of El Nino/La Nina, the Northeast Monsoon, Northwest Monsoon and Tsunami. It is important to study the occurrence of the ENSO event and it characteristic so that it can be used for prediction and monitoring the land and water ecosystem. This research is to identify the variations of sea level and tidal behaviour in Malaysian coastline during El Nino/La Nina. The tidal observation data, meteorology data (temperature and mean sea level pressure), and Southern Oscillation Index (SOI) calculation are used to look on the changes of the tidal variation during the ENSO phenomenon. The results of this research will specially benefit in the determination of tidal level in Malaysia and to the professionals who have responsibilities in policy making, agriculture, environmental planning, economics and marine engineering.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2021 ◽  
Vol 13 (14) ◽  
pp. 7987
Author(s):  
Mehmet Balcilar ◽  
Elie Bouri ◽  
Rangan Gupta ◽  
Christian Pierdzioch

We use the heterogenous autoregressive (HAR) model to compute out-of-sample forecasts of the monthly realized variance (RV) of movements of the spot and futures price of heating oil. We extend the HAR–RV model to include the role of El Niño and La Niña episodes, as captured by the Equatorial Southern Oscillation Index (EQSOI). Using data from June 1986 to April 2021, we show evidence for several model configurations that both El Niño and La Niña phases contain information useful for forecasting subsequent to the realized variance of price movements beyond the predictive value already captured by the HAR–RV model. The predictive value of La Niña phases, however, seems to be somewhat stronger than the predictive value of El Niño phases. Our results have important implications for investors, as well as from the perspective of sustainable decisions involving the environment.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2017 ◽  
Vol 30 (11) ◽  
pp. 4207-4225 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann ◽  
David S. Battisti

Abstract The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.


2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Wayan Suparta ◽  
Ahmad Iskandar ◽  
Mandeep Singh Jit Singh ◽  
Mohd. Alauddin Mohd. Ali ◽  
Baharudin Yatim ◽  
...  

<p>We analyzed the variability of global positioning system (GPS) water vapor during the 2011 La Niña events over the western Pacific Ocean. The precipitable water vapor (PWV) derived from the UMSK (Malaysia) GPS station was investigated and compared with four other selected GPS stations: NTUS (Singapore), PIMO (Philippines), BAKO (Indonesia) and TOW2 (Australia). Analysis of the correlation between PWV and the sea-surface temperature anomaly (SSTa) on a weekly basis for the three La Niña cases of January–February–March, August–September–October, and October–November–December was used as an indicator of the influence of the El Niño Southern Oscillation. A good relationship between GPS PWV and SSTa for the Niño 4 region, with correlation coefficients between -0.91 and -0.94, was observed for the August–September–October and October–November–December cases. During the 2011 La Niña events, the water vapor was seen to increase to about 8.39 mm for the October–November–December case, with decreases of about 4.20 mm for the remaining months, compared to the mean 2011 value. This implies that during these events, the precipitation in the western Pacific is increased, due to stronger easterly trade winds blowing along the eastern Pacific Ocean than along the western Pacific, and a mass of warm water moving westwards, thereby increasing the evaporation.</p>


2008 ◽  
Vol 4 (1) ◽  
pp. 173-211
Author(s):  
E. Dietze ◽  
A. Kleber ◽  
M. Schwikowski

Abstract. El Niño-Southern Oscillation (ENSO) is an important element of earth's ocean-climate system. To further understand its past variability, proxy records from climate archives need to be studied. Ice cores from high alpine glaciers may contain high resolution ENSO proxy information, given the glacier site is climatologically sensitive to ENSO. We investigated signals of ENSO in the climate of the subtropical Andes in the proximity of Cerro Tapado glacier (30°08' S, 69°55' W, 5550 m a.s.l.), where a 36 m long ice core was drilled in 1999 (Ginot, 2001). We used annual and semi-annual precipitation and temperature time series from regional meteorological stations and interpolated grids for correlation analyses with ENSO indices and ice core-derived proxies (net accumulation, stable isotope ratio δ18O, major ion concentrations). The total time period investigated here comprises 1900 to 2000, but varies with data sets. Only in the western, i.e. Mediterranean Andes precipitation is higher (lower) during El Niño (La Niña) events, especially at higher altitudes, due to the latitudinal shift of frontal activity during austral winters. However, the temperature response to ENSO is more stable in space and time, being higher (lower) during El Niño (La Niña) events in most of the subtropical Andes all year long. From a northwest to southeast teleconnection gradient, we suggest a regional water vapour feedback triggers temperature anomalies as a function of ENSO-related changes in regional pressure systems, Pacific sea surface temperature and tropical moisture input. Tapado glacier ice proxies are found to be predominantly connected to eastern Andean summer rain climate, which contradicts previous studies and the modern mean spatial boundary between subtropical summer and winter rain climate derived from the grid data. The only ice core proxy showing a response to ENSO is the major ion concentrations, via local temperature indicating reduced sublimation and mineral dust input during El Niño years.


Author(s):  
Arini Wahyu Utami ◽  
Jamhari Jamhari ◽  
Suhatmini Hardyastuti

Paddy and maize are two important food crops in Indonesia and mainly produced in Java Island. This research aimed to know the impact of El Nino and La Nina on paddy and maize farmer’s supply in Java. Cross sectional data from four provinces in Java was combined with time series data during 1987-2006. Paddy supply was estimated using log model, while maize supply used autoregressive model; each was estimated using two types of regression function. First, it included dummy variable of El Nino and La Nina to know their influence into paddy and maize supply. Second, Southern Oscillation Index was used to analyze the supply changing when El Nino or La Nina occur. The result showed that El Nino and La Nina did not influence paddy supply, while La Nina influenced maize supply in Java. Maize supply increased when La Nina occurred.


Sign in / Sign up

Export Citation Format

Share Document