scholarly journals Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates

2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer M. Lang ◽  
Leslie R. Sedgeman ◽  
Lei Cai ◽  
Joseph D. Layne ◽  
Zhen Wang ◽  
...  

The gut microbiome influences nutrient processing as well as host physiology. Plasma lipid levels have been associated with the microbiome, although the underlying mechanisms are largely unknown, and the effects of dietary lipids on the gut microbiome in humans are not well-studied. We used a compilation of four studies utilizing non-human primates (Chlorocebus aethiops and Macaca fascicularis) with treatments that manipulated plasma lipid levels using dietary and pharmacological techniques, and characterized the microbiome using 16S rDNA. High-fat diets significantly reduced alpha diversity (Shannon) and the Firmicutes/Bacteroidetes ratio compared to chow diets, even when the diets had different compositions and were applied in different orders. When analyzed for differential abundance using DESeq2, Bulleidia, Clostridium, Ruminococcus, Eubacterium, Coprocacillus, Lachnospira, Blautia, Coprococcus, and Oscillospira were greater in both chow diets while Succinivibrio, Collinsella, Streptococcus, and Lactococcus were greater in both high-fat diets (oleic blend or lard fat source). Dietary cholesterol levels did not affect the microbiome and neither did alterations of plasma lipid levels through treatments of miR-33 antisense oligonucleotide (anti-miR-33), Niemann–Pick C1-Like 1 (NPC1L1) antisense oligonucleotide (ASO), and inducible degrader of LDLR (IDOL) ASO. However, a liver X receptor (LXR) agonist shifted the microbiome and decreased bile acid levels. Fifteen genera increased with the LXR agonist, while seven genera decreased. Pseudomonas increased on the LXR agonist and was negatively correlated to deoxycholic acid, cholic acid, and total bile acids while Ruminococcus was positively correlated with taurolithocholic acid and taurodeoxycholic acid. Seven of the nine bile acids identified in the feces significantly decreased due to the LXR agonist, and total bile acids (nmol/g) was reduced by 62%. These results indicate that plasma lipid levels have, at most, a modest effect on the microbiome, whereas bile acids, derived in part from plasma lipids, are likely responsible for the indirect relationship between lipid levels and the microbiome.

2020 ◽  
pp. 1-29 ◽  
Author(s):  
Siofra E. Maher ◽  
Eileen C. O’Brien ◽  
Rebecca L. Moore ◽  
David F. Byrne ◽  
Aisling A. Geraghty ◽  
...  

Abstract During pregnancy, changes occur to influence the maternal gut microbiome, and potentially the fetal microbiome. Diet has been shown to impact the gut microbiome. Little research has been conducted examining diet during pregnancy with respect to the gut microbiome. To meet inclusion criteria, dietary analyses must have been conducted as part of the primary aim. The primary outcome was the composition of the gut microbiome (infant or maternal), as assessed using culture-independent sequencing techniques. This review identified seven studies for inclusion, five examining the maternal gut microbiome and two examining the fetal gut microbiome. Microbial data were attained through analysis of stool samples by 16S rRNA gene-based microbiota assessment. Studies found an association between the maternal diet and gut microbiome. High-fat diets (% fat of total energy), fat-soluble vitamins (mg/day) and fibre (g/day) were the most significant nutrients associated with the gut microbiota composition of both neonates and mothers. High-fat diets were significantly associated with a reduction in microbial diversity. High-fat diets may reduce microbial diversity, while fibre intake may be positively associated with microbial diversity. The results of this review must be interpreted with caution. The number of studies was low, and the risk of observational bias and heterogeneity across the studies must be considered. However, these results show promise for dietary intervention and microbial manipulation in order to favour an increase of health-associated taxa in the gut of the mother and her offspring.


1991 ◽  
Vol 261 (6) ◽  
pp. R1465-R1469 ◽  
Author(s):  
D. D. Hodgkin ◽  
R. J. Boucek ◽  
R. E. Purdy ◽  
W. J. Pearce ◽  
I. M. Fraser ◽  
...  

Dietary lipid modulation of alpha-adrenoceptor (adrenergic receptor)- and non-adrenoceptor-mediated contractile properties of isolated rat abdominal aortic segments were assessed during the early developmental period. Rats were raised from conception to 90 days of age on semisynthetic diets containing various types and amounts of lipids. Aortic segments from three groups of rats fed high-fat diets (15% wt/wt) consisting of olive oil, corn oil, or lard as the sole lipid sources were compared with those from rats fed a low-fat control diet containing corn oil (5% wt/wt). alpha-Adrenoceptor activities were assessed by measuring the norepinephrine dose response of the tissue rings with and without partial inactivation of alpha-receptors by benextramine. alpha-Adrenoceptor sensitivity to norepinephrine increased, whereas receptor affinity decreased significantly in rats raised on high-fat diets. Qualitative features of dietary lipids influenced non-adrenoceptor-dependent aspects of vascular contractility. Diets rich in polyunsaturated fatty acids (high- and low-fat corn oil) raised the maximum response to norepinephrine and the contractile response to 60 mM potassium compared with more-saturated diets (olive oil and lard). These results demonstrate an effect of chronic feeding of high dietary fat on alpha-adrenoceptor-mediated contractility of abdominal aortic rings from young Sprague-Dawley rats. Qualitative features of dietary lipids also appear to modify receptor-independent parameters of the contractile response of the arterial tissue rings in these animals.


2006 ◽  
Vol 95 (5) ◽  
pp. 905-915 ◽  
Author(s):  
Zhen-Yu Du ◽  
Pierre Clouet ◽  
Wen-Hui Zheng ◽  
Pascal Degrace ◽  
Li-Xia Tian ◽  
...  

High-fat diets may have favourable effects on growth of some carnivorous fish because of the protein-sparing effect of lipids, but high-fat diets also exert some negative impacts on flesh quality. The goal of the study was therefore to determine the effects of fat-enriched diets in juvenile grass carp (Ctenopharyngodon idella) as a typical herbivorous fish on growth and possible lipid metabolism alterations. Three isonitrogenous diets containing 2, 6 or 10% of a mixture of lard, maize oil and fish oil (1:1:1, by weight) were applied to fish for 8 weeks in a recirculation system. Data show that feeding diets with increasing lipid levels resulted in lowered feed intake, decreased growth and feed efficiency, and increased mesenteric fat tissue weight. Concomitantly, alteration of lipoprotein synthesis and greater level of lipid peroxidation were apparent in blood. In liver, muscle and mesenteric fat tissue, the percentages of α-linolenic acid and DHA were significantly increased or tended to increase with higher dietary lipid levels. Biochemical activity measurements performed on liver showed that, with the increase in dietary lipid level, there was a decrease in both mitochondrial and peroxisomal fatty acid oxidation capacities, which might contribute, at least in part, to the specific accumulation of α-linolenic acid and DHA into cells more active in membrane building. On the whole, grass carp have difficulty in energetically utilising excess dietary fat, especially when enriched in n−3 PUFA that are susceptible to peroxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1251
Author(s):  
Yuqing Tan ◽  
Christina C. Tam ◽  
Matt Rolston ◽  
Priscila Alves ◽  
Ling Chen ◽  
...  

Quercetin is a flavonoid that has been shown to have health-promoting capacities due to its potent antioxidant activity. However, the effect of chronic intake of quercetin on the gut microbiome and diabetes-related biomarkers remains unclear. Male C57BL/6J mice were fed HF or HF supplemented with 0.05% quercetin (HFQ) for 6 weeks. Diabetes-related biomarkers in blood were determined in mice fed high-fat (HF) diets supplemented with quercetin. Mice fed the HFQ diet gained less body, liver, and adipose weight, while liver lipid and blood glucose levels were also lowered. Diabetes-related plasma biomarkers insulin, leptin, resistin, and glucagon were significantly reduced by quercetin supplementation. In feces, quercetin supplementation significantly increased the relative abundance of Akkermansia and decreased the Firmicutes/Bacteroidetes ratio. The expression of genes Srebf1, Ppara, Cyp51, Scd1, and Fasn was downregulated by quercetin supplementation. These results indicated that diabetes biomarkers are associated with early metabolic changes accompanying obesity, and quercetin may ameliorate insulin resistance.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 418 ◽  
Author(s):  
Nijiati Abulizi ◽  
Candice Quin ◽  
Kirsty Brown ◽  
Yee Chan ◽  
Sandeep Gill ◽  
...  

The dynamics of the tripartite relationship between the host, gut bacteria and diet in the gut is relatively unknown. An imbalance between harmful and protective gut bacteria, termed dysbiosis, has been linked to many diseases and has most often been attributed to high-fat dietary intake. However, we recently clarified that the type of fat, not calories, were important in the development of murine colitis. To further understand the host-microbe dynamic in response to dietary lipids, we fed mice isocaloric high-fat diets containing either milk fat, corn oil or olive oil and performed 16S rRNA gene sequencing of the colon microbiome and mass spectrometry-based relative quantification of the colonic metaproteome. The corn oil diet, rich in omega-6 polyunsaturated fatty acids, increased the potential for pathobiont survival and invasion in an inflamed, oxidized and damaged gut while saturated fatty acids promoted compensatory inflammatory responses involved in tissue healing. We conclude that various lipids uniquely alter the host-microbe interaction in the gut. While high-fat consumption has a distinct impact on the gut microbiota, the type of fatty acids alters the relative microbial abundances and predicted functions. These results support that the type of fat are key to understanding the biological effects of high-fat diets on gut health.


Sign in / Sign up

Export Citation Format

Share Document