scholarly journals Machine Learning Prediction Model for Acute Renal Failure After Acute Aortic Syndrome Surgery

2022 ◽  
Vol 8 ◽  
Author(s):  
Jinzhang Li ◽  
Ming Gong ◽  
Yashutosh Joshi ◽  
Lizhong Sun ◽  
Lianjun Huang ◽  
...  

BackgroundAcute renal failure (ARF) is the most common major complication following cardiac surgery for acute aortic syndrome (AAS) and worsens the postoperative prognosis. Our aim was to establish a machine learning prediction model for ARF occurrence in AAS patients.MethodsWe included AAS patient data from nine medical centers (n = 1,637) and analyzed the incidence of ARF and the risk factors for postoperative ARF. We used data from six medical centers to compare the performance of four machine learning models and performed internal validation to identify AAS patients who developed postoperative ARF. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to compare the performance of the predictive models. We compared the performance of the optimal machine learning prediction model with that of traditional prediction models. Data from three medical centers were used for external validation.ResultsThe eXtreme Gradient Boosting (XGBoost) algorithm performed best in the internal validation process (AUC = 0.82), which was better than both the logistic regression (LR) prediction model (AUC = 0.77, p < 0.001) and the traditional scoring systems. Upon external validation, the XGBoost prediction model (AUC =0.81) also performed better than both the LR prediction model (AUC = 0.75, p = 0.03) and the traditional scoring systems. We created an online application based on the XGBoost prediction model.ConclusionsWe have developed a machine learning model that has better predictive performance than traditional LR prediction models as well as other existing risk scoring systems for postoperative ARF. This model can be utilized to provide early warnings when high-risk patients are found, enabling clinicians to take prompt measures.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ming-Hui Hung ◽  
Ling-Chieh Shih ◽  
Yu-Ching Wang ◽  
Hsin-Bang Leu ◽  
Po-Hsun Huang ◽  
...  

Objective: This study aimed to develop machine learning-based prediction models to predict masked hypertension and masked uncontrolled hypertension using the clinical characteristics of patients at a single outpatient visit.Methods: Data were derived from two cohorts in Taiwan. The first cohort included 970 hypertensive patients recruited from six medical centers between 2004 and 2005, which were split into a training set (n = 679), a validation set (n = 146), and a test set (n = 145) for model development and internal validation. The second cohort included 416 hypertensive patients recruited from a single medical center between 2012 and 2020, which was used for external validation. We used 33 clinical characteristics as candidate variables to develop models based on logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGboost), and artificial neural network (ANN).Results: The four models featured high sensitivity and high negative predictive value (NPV) in internal validation (sensitivity = 0.914–1.000; NPV = 0.853–1.000) and external validation (sensitivity = 0.950–1.000; NPV = 0.875–1.000). The RF, XGboost, and ANN models showed much higher area under the receiver operating characteristic curve (AUC) (0.799–0.851 in internal validation, 0.672–0.837 in external validation) than the LR model. Among the models, the RF model, composed of 6 predictor variables, had the best overall performance in both internal and external validation (AUC = 0.851 and 0.837; sensitivity = 1.000 and 1.000; specificity = 0.609 and 0.580; NPV = 1.000 and 1.000; accuracy = 0.766 and 0.721, respectively).Conclusion: An effective machine learning-based predictive model that requires data from a single clinic visit may help to identify masked hypertension and masked uncontrolled hypertension.


Author(s):  
Sooyoung Yoo ◽  
Jinwook Choi ◽  
Borim Ryu ◽  
Seok Kim

Abstract Background Unplanned hospital readmission after discharge reflects low satisfaction and reliability in care and the possibility of potential medical accidents, and is thus indicative of the quality of patient care and the appropriateness of discharge plans. Objectives The purpose of this study was to develop and validate prediction models for all-cause unplanned hospital readmissions within 30 days of discharge, based on a common data model (CDM), which can be applied to multiple institutions for efficient readmission management. Methods Retrospective patient-level prediction models were developed based on clinical data of two tertiary general university hospitals converted into a CDM developed by Observational Medical Outcomes Partnership. Machine learning classification models based on the LASSO logistic regression model, decision tree, AdaBoost, random forest, and gradient boosting machine (GBM) were developed and tested by manipulating a set of CDM variables. An internal 10-fold cross-validation was performed on the target data of the model. To examine its transportability, the model was externally validated. Verification indicators helped evaluate the model performance based on the values of area under the curve (AUC). Results Based on the time interval for outcome prediction, it was confirmed that the prediction model targeting the variables obtained within 30 days of discharge was the most efficient (AUC of 82.75). The external validation showed that the model is transferable, with the combination of various clinical covariates. Above all, the prediction model based on the GBM showed the highest AUC performance of 84.14 ± 0.015 for the Seoul National University Hospital cohort, yielding in 78.33 in external validation. Conclusions This study showed that readmission prediction models developed using machine-learning techniques and CDM can be a useful tool to compare two hospitals in terms of patient-data features.


2021 ◽  
Author(s):  
Constanza L Andaur Navarro ◽  
Johanna AA Damen ◽  
Toshihiko Takada ◽  
Steven WJ Nijman ◽  
Paula Dhiman ◽  
...  

ABSTRACT Objective. While many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. Our aim is to systematically review the adherence of Machine Learning (ML)-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement. Study design and setting: We included articles reporting on development or external validation of a multivariable prediction model (either diagnostic or prognostic) developed using supervised ML for individualized predictions across all medical fields (PROSPERO, CRD42019161764). We searched PubMed from 1 January 2018 to 31 December 2019. Data extraction was performed using the 22-item checklist for reporting of prediction model studies (www.TRIPOD-statement.org). We measured the overall adherence per article and per TRIPOD item. Results: Our search identified 24 814 articles, of which 152 articles were included: 94 (61.8%) prognostic and 58 (38.2%) diagnostic prediction model studies. Overall, articles adhered to a median of 38.7% (IQR 31.0-46.4) of TRIPOD items. No articles fully adhered to complete reporting of the abstract and very few reported the flow of participants (3.9%, 95% CI 1.8 to 8.3), appropriate title (4.6%, 95% CI 2.2 to 9.2), blinding of predictors (4.6%, 95% CI 2.2 to 9.2), model specification (5.2%, 95% CI 2.4 to 10.8), and model's predictive performance (5.9%, 95% CI 3.1 to 10.9). There was often complete reporting of source of data (98.0%, 95% CI 94.4 to 99.3) and interpretation of the results (94.7%, 95% CI 90.0 to 97.3). Conclusion. Similar to studies using conventional statistical techniques, the completeness of reporting is poor. Essential information to decide to use the model (i.e. model specification and its performance) is rarely reported. However, some items and sub-items of TRIPOD might be less suitable for ML-based prediction model studies and thus, TRIPOD requires extensions. Overall, there is an urgent need to improve the reporting quality and usability of research to avoid research waste.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yue Gao ◽  
Lingxi Chen ◽  
Jianhua Chi ◽  
Shaoqing Zeng ◽  
Xikang Feng ◽  
...  

Abstract Background Immune and inflammatory dysfunction was reported to underpin critical COVID-19(coronavirus disease 2019). We aim to develop a machine learning model that enables accurate prediction of critical COVID-19 using immune-inflammatory features at admission. Methods We retrospectively collected 2076 consecutive COVID-19 patients with definite outcomes (discharge or death) between January 27, 2020 and March 30, 2020 from two hospitals in China. Critical illness was defined as admission to intensive care unit, receiving invasive ventilation, or death. Least Absolute Shrinkage and Selection Operator (LASSO) was applied for feature selection. Five machine learning algorithms, including Logistic Regression (LR), Support Vector Machine (SVM), Gradient Boosted Decision Tree (GBDT), K-Nearest Neighbor (KNN), and Neural Network (NN) were built in a training dataset, and assessed in an internal validation dataset and an external validation dataset. Results Six features (procalcitonin, [T + B + NK cell] count, interleukin 6, C reactive protein, interleukin 2 receptor, T-helper lymphocyte/T-suppressor lymphocyte) were finally used for model development. Five models displayed varying but all promising predictive performance. Notably, the ensemble model, SPMCIIP (severity prediction model for COVID-19 by immune-inflammatory parameters), derived from three contributive algorithms (SVM, GBDT, and NN) achieved the best performance with an area under the curve (AUC) of 0.991 (95% confidence interval [CI] 0.979–1.000) in internal validation cohort and 0.999 (95% CI 0.998–1.000) in external validation cohort to identify patients with critical COVID-19. SPMCIIP could accurately and expeditiously predict the occurrence of critical COVID-19 approximately 20 days in advance. Conclusions The developed online prediction model SPMCIIP is hopeful to facilitate intensive monitoring and early intervention of high risk of critical illness in COVID-19 patients. Trial registration This study was retrospectively registered in the Chinese Clinical Trial Registry (ChiCTR2000032161). Graphical abstracthelper lymphocytve vv


2021 ◽  
Author(s):  
Jaeyoung Yang ◽  
Hong-Gook Lim ◽  
Wonhyeong Park ◽  
Dongseok Kim ◽  
Jin Sun Yoon ◽  
...  

Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.


2021 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Mahdieh Montazeri ◽  
Ali Afraz ◽  
Mitra Montazeri ◽  
Sadegh Nejatzadeh ◽  
Fatemeh Rahimi ◽  
...  

Introduction: Our aim in this study was to summarize information on the use of intelligent models for predicting and diagnosing the Coronavirus disease 2019 (COVID-19) to help early and timely diagnosis of the disease.Material and Methods: A systematic literature search included articles published until 20 April 2020 in PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv databases. The search strategy consisted of two groups of keywords: A) Novel coronavirus, B) Machine learning. Two reviewers independently assessed original papers to determine eligibility for inclusion in this review. Studies were critically reviewed for risk of bias using prediction model risk of bias assessment tool.Results: We gathered 1650 articles through database searches. After the full-text assessment 31 articles were included. Neural networks and deep neural network variants were the most popular machine learning type. Of the five models that authors claimed were externally validated, we considered external validation only for four of them. Area under the curve (AUC) in internal validation of prognostic models varied from .94 to .97. AUC in diagnostic models varied from 0.84 to 0.99, and AUC in external validation of diagnostic models varied from 0.73 to 0.94. Our analysis finds all but two studies have a high risk of bias due to various reasons like a low number of participants and lack of external validation.Conclusion: Diagnostic and prognostic models for COVID-19 show good to excellent discriminative performance. However, these models are at high risk of bias because of various reasons like a low number of participants and lack of external validation. Future studies should address these concerns. Sharing data and experiences for the development, validation, and updating of COVID-19 related prediction models is needed. 


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jongsung Kim ◽  
Donghyun Kim ◽  
Younghye Bae ◽  
...  

Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.


2020 ◽  
Author(s):  
Young Min Park ◽  
Byung-Joo Lee

Abstract Background: This study analyzed the prognostic significance of nodal factors, including the number of metastatic LNs and LNR, in patients with PTC, and attempted to construct a disease recurrence prediction model using machine learning techniques.Methods: We retrospectively analyzed clinico-pathologic data from 1040 patients diagnosed with papillary thyroid cancer between 2003 and 2009. Results: We analyzed clinico-pathologic factors related to recurrence through logistic regression analysis. Among the factors that we included, only sex and tumor size were significantly correlated with disease recurrence. Parameters such as age, sex, tumor size, tumor multiplicity, ETE, ENE, pT, pN, ipsilateral central LN metastasis, contralateral central LNs metastasis, number of metastatic LNs, and LNR were input for construction of a machine learning prediction model. The performance of five machine learning models related to recurrence prediction was compared based on accuracy. The Decision Tree model showed the best accuracy at 95%, and the lightGBM and stacking model together showed 93% accuracy. Conclusions: We confirmed that all machine learning prediction models showed an accuracy of 90% or more for predicting disease recurrence in PTC. Large-scale multicenter clinical studies should be performed to improve the performance of our prediction models and verify their clinical effectiveness.


2019 ◽  
Vol 8 (2) ◽  
pp. 4499-4504

Heart diseases are responsible for the greatest number of deaths all over the world. These diseases are usually not detected in early stages as the cost of medical diagnostics is not affordable by a majority of the people. Research has shown that machine learning methods have a great capability to extract valuable information from the medical data. This information is used to build the prediction models which provide cost effective technological aid for a medical practitioner to detect the heart disease in early stages. However, the presence of some irrelevant and redundant features in medical data deteriorates the competence of the prediction system. This research was aimed to improve the accuracy of the existing methods by removing such features. In this study, brute force-based algorithm of feature selection was used to determine relevant significant features. After experimenting rigorously with 7528 possible combinations of features and 5 machine learning algorithms, 8 important features were identified. A prediction model was developed using these significant features. Accuracy of this model is experimentally calculated to be 86.4%which is higher than the results of existing studies. The prediction model proposed in this study shall help in predicting heart disease efficiently.


Sign in / Sign up

Export Citation Format

Share Document