scholarly journals Development of Heavy Rain Damage Prediction Model Using Machine Learning Based on Big Data

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jongsung Kim ◽  
Donghyun Kim ◽  
Younghye Bae ◽  
...  

Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2516 ◽  
Author(s):  
Changhyun Choi ◽  
Jeonghwan Kim ◽  
Jungwook Kim ◽  
Hung Soo Kim

Adequate forecasting and preparation for heavy rain can minimize life and property damage. Some studies have been conducted on the heavy rain damage prediction model (HDPM), however, most of their models are limited to the linear regression model that simply explains the linear relation between rainfall data and damage. This study develops the combined heavy rain damage prediction model (CHDPM) where the residual prediction model (RPM) is added to the HDPM. The predictive performance of the CHDPM is analyzed to be 4–14% higher than that of HDPM. Through this, we confirmed that the predictive performance of the model is improved by combining the RPM of the machine learning models to complement the linearity of the HDPM. The results of this study can be used as basic data beneficial for natural disaster management.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1942 ◽  
Author(s):  
Kanghyeok Lee ◽  
Changhyun Choi ◽  
Do Hyoung Shin ◽  
Hung Soo Kim

Heavy rain damage prediction models were developed with a deep learning technique for predicting the damage to a region before heavy rain damage occurs. As a dependent variable, a damage scale comprising three categories (minor, significant, severe) was used, and meteorological data 7 days before the damage were used as independent variables. A deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN), which are representative deep learning techniques, were employed for the model development. Each model was trained and tested 30 times to evaluate the predictive performance. As a result of evaluating the predicted performance, the DNN-based model and the CNN-based model showed good performance, and the RNN-based model was analyzed to have relatively low performance. For the DNN-based model, the convergence epoch of the training showed a relatively wide distribution, which may lead to difficulties in selecting an epoch suitable for practical use. Therefore, the CNN-based model would be acceptable for the heavy rain damage prediction in terms of the accuracy and robustness. These results demonstrated the applicability of deep learning in the development of the damage prediction model. The proposed prediction model can be used for disaster management as the basic data for decision making.


2020 ◽  
Author(s):  
Young Min Park ◽  
Byung-Joo Lee

Abstract Background: This study analyzed the prognostic significance of nodal factors, including the number of metastatic LNs and LNR, in patients with PTC, and attempted to construct a disease recurrence prediction model using machine learning techniques.Methods: We retrospectively analyzed clinico-pathologic data from 1040 patients diagnosed with papillary thyroid cancer between 2003 and 2009. Results: We analyzed clinico-pathologic factors related to recurrence through logistic regression analysis. Among the factors that we included, only sex and tumor size were significantly correlated with disease recurrence. Parameters such as age, sex, tumor size, tumor multiplicity, ETE, ENE, pT, pN, ipsilateral central LN metastasis, contralateral central LNs metastasis, number of metastatic LNs, and LNR were input for construction of a machine learning prediction model. The performance of five machine learning models related to recurrence prediction was compared based on accuracy. The Decision Tree model showed the best accuracy at 95%, and the lightGBM and stacking model together showed 93% accuracy. Conclusions: We confirmed that all machine learning prediction models showed an accuracy of 90% or more for predicting disease recurrence in PTC. Large-scale multicenter clinical studies should be performed to improve the performance of our prediction models and verify their clinical effectiveness.


The Bank Marketing data set at Kaggle is mostly used in predicting if bank clients will subscribe a long-term deposit. We believe that this data set could provide more useful information such as predicting whether a bank client could be approved for a loan. This is a critical choice that has to be made by decision makers at the bank. Building a prediction model for such high-stakes decision does not only require high model prediction accuracy, but also needs a reasonable prediction interpretation. In this research, different ensemble machine learning techniques have been deployed such as Bagging and Boosting. Our research results showed that the loan approval prediction model has an accuracy of 83.97%, which is approximately 25% better than most state-of-the-art other loan prediction models found in the literature. As well, the model interpretation efforts done in this research was able to explain a few critical cases that the bank decision makers may encounter; therefore, the high accuracy of the designed models was accompanied with a trust in prediction. We believe that the achieved model accuracy accompanied with the provided interpretation information are vitally needed for decision makers to understand how to maintain balance between security and reliability of their financial lending system, while providing fair credit opportunities to their clients.


2021 ◽  
Vol 1 (4) ◽  
pp. 268-280
Author(s):  
Bamanga Mahmud , , , Ahmad ◽  
Ahmadu Asabe Sandra ◽  
Musa Yusuf Malgwi ◽  
Dahiru I. Sajoh

For the identification and prediction of different diseases, machine learning techniques are commonly used in clinical decision support systems. Since heart disease is the leading cause of death for both men and women around the world. Heart is one of the essential parts of human body, therefore, it is one of the most critical concerns in the medical domain, and several researchers have developed intelligent medical devices to support the systems and further to enhance the ability to diagnose and predict heart diseases. However, there are few studies that look at the capabilities of ensemble methods in developing a heart disease detection and prediction model. In this study, the researchers assessed that how to use ensemble model, which proposes a more stable performance than the use of base learning algorithm and these leads to better results than other heart disease prediction models. The University of California, Irvine (UCI) Machine Learning Repository archive was used to extract patient heart disease data records. To achieve the aim of this study, the researcher developed the meta-algorithm. The ensemble model is a superior solution in terms of high predictive accuracy and diagnostics output reliability, as per the results of the experiments. An ensemble heart disease prediction model is also presented in this work as a valuable, cost-effective, and timely predictive option with a user-friendly graphical user interface that is scalable and expandable. From the finding, the researcher suggests that Bagging is the best ensemble classifier to be adopted as the extended algorithm that has the high prediction probability score in the implementation of heart disease prediction.


2018 ◽  
Vol 18 (7) ◽  
pp. 435-447
Author(s):  
Changhyun Choi ◽  
Jongsung Kim ◽  
Donghyun Kim ◽  
Junhyeong Lee ◽  
Deokhwan Kim ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260517
Author(s):  
Jee Soo Park ◽  
Dong Wook Kim ◽  
Dongu Lee ◽  
Taeju Lee ◽  
Kyo Chul Koo ◽  
...  

Objectives To develop a prediction model of spontaneous ureteral stone passage (SSP) using machine learning and logistic regression and compare the performance of the two models. Indications for management of ureteral stones are unclear, and the clinician determines whether to wait for SSP or perform active treatment, especially in well-controlled patients, to avoid unwanted complications. Therefore, suggesting the possibility of SSP would help make a clinical decision regarding ureteral stones. Methods Patients diagnosed with unilateral ureteral stones at our emergency department between August 2014 and September 2018 were included and underwent non-contrast-enhanced computed tomography 4 weeks from the first stone episode. Predictors of SSP were applied to build and validate the prediction model using multilayer perceptron (MLP) with the Keras framework. Results Of 833 patients, SSP was observed in 606 (72.7%). SSP rates were 68.2% and 75.6% for stone sizes 5–10 mm and <5 mm, respectively. Stone opacity, location, and whether it was the first ureteral stone episode were significant predictors of SSP. Areas under the curve (AUCs) for receiver operating characteristic (ROC) curves for MLP, and logistic regression were 0.859 and 0.847, respectively, for stones <5 mm, and 0.881 and 0.817, respectively, for 5–10 mm stones. Conclusion SSP prediction models were developed in patients with well-controlled unilateral ureteral stones; the performance of the models was good, especially in identifying SSP for 5–10-mm ureteral stones without definite treatment guidelines. To further improve the performance of these models, future studies should focus on using machine learning techniques in image analysis.


BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e038832
Author(s):  
Constanza L Andaur Navarro ◽  
Johanna A A G Damen ◽  
Toshihiko Takada ◽  
Steven W J Nijman ◽  
Paula Dhiman ◽  
...  

IntroductionStudies addressing the development and/or validation of diagnostic and prognostic prediction models are abundant in most clinical domains. Systematic reviews have shown that the methodological and reporting quality of prediction model studies is suboptimal. Due to the increasing availability of larger, routinely collected and complex medical data, and the rising application of Artificial Intelligence (AI) or machine learning (ML) techniques, the number of prediction model studies is expected to increase even further. Prediction models developed using AI or ML techniques are often labelled as a ‘black box’ and little is known about their methodological and reporting quality. Therefore, this comprehensive systematic review aims to evaluate the reporting quality, the methodological conduct, and the risk of bias of prediction model studies that applied ML techniques for model development and/or validation.Methods and analysisA search will be performed in PubMed to identify studies developing and/or validating prediction models using any ML methodology and across all medical fields. Studies will be included if they were published between January 2018 and December 2019, predict patient-related outcomes, use any study design or data source, and available in English. Screening of search results and data extraction from included articles will be performed by two independent reviewers. The primary outcomes of this systematic review are: (1) the adherence of ML-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), and (2) the risk of bias in such studies as assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). A narrative synthesis will be conducted for all included studies. Findings will be stratified by study type, medical field and prevalent ML methods, and will inform necessary extensions or updates of TRIPOD and PROBAST to better address prediction model studies that used AI or ML techniques.Ethics and disseminationEthical approval is not required for this study because only available published data will be analysed. Findings will be disseminated through peer-reviewed publications and scientific conferences.Systematic review registrationPROSPERO, CRD42019161764.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nitigya Sambyal ◽  
Poonam Saini ◽  
Rupali Syal

Background and Introduction: Diabetes mellitus is a metabolic disorder that has emerged as a serious public health issue worldwide. According to the World Health Organization (WHO), without interventions, the number of diabetic incidences is expected to be at least 629 million by 2045. Uncontrolled diabetes gradually leads to progressive damage to eyes, heart, kidneys, blood vessels and nerves. Method: The paper presents a critical review of existing statistical and Artificial Intelligence (AI) based machine learning techniques with respect to DM complications namely retinopathy, neuropathy and nephropathy. The statistical and machine learning analytic techniques are used to structure the subsequent content review. Result: It has been inferred that statistical analysis can help only in inferential and descriptive analysis whereas, AI based machine learning models can even provide actionable prediction models for faster and accurate diagnose of complications associated with DM. Conclusion: The integration of AI based analytics techniques like machine learning and deep learning in clinical medicine will result in improved disease management through faster disease detection and cost reduction for disease treatment.


Sign in / Sign up

Export Citation Format

Share Document