scholarly journals The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword

2022 ◽  
Vol 8 ◽  
Eman Wehedy ◽  
Ibrahim F. Shatat ◽  
Souhaila Al Khodor

Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.

2019 ◽  
Vol 133 (17) ◽  
pp. 1857-1870 ◽  
Siqi Wang ◽  
Dan Lv ◽  
Shuanghong Jiang ◽  
Jianpin Jiang ◽  
Min Liang ◽  

Abstract Chronic kidney disease (CKD) affects 10–15% of the population worldwide, results in high morbidity and mortality, and requires costly treatment and renal replacement therapy. Glomerulosclerosis, tubulointerstitial fibrosis, and persistent intestinal flora disturbance are common in CKD. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota, have been previously reported to ameliorate kidney injury; however, the specific concentrations and types that are required to improve renal function remain unknown. The present study aims to evaluate the levels of SCFAs in healthy and CKD patients, and to test the hypothesis that SCFAs play a critical role in delaying CKD progression. One hundred and twenty-seven patients with CKD and 63 healthy controls from China were enrolled in the present study. Butyrate, which is considered beneficial to humans, was almost three-times higher in healthy volunteers than that in CKD5 subjects (P=0.001). Moreover, the serum SCFA levels in controls were significantly higher than that in CKD patients (P<0.05), and the butyrate level among CKD5 patients (1.48 ± 0.60 μmol/l) was less than half of that in controls (3.44 ± 2.12 μmol/l, P<0.001). In addition, we observed an inverse correlation between butyrate level and renal function (P<0.05). A CKD rat model transplanted with microbiota obtained from CKD patients exhibited accelerated CKD progression via increased production of trimethylamine N-oxide (TMAO), which was reversed by supplementation with extra butyrate. Our results showed that SCFA levels were reduced in CKD patients and that butyrate supplementation might delay CKD progression.

Zh. Semydotska ◽  
I. Chernyakova ◽  
O. Avdeyeva

 The review article analyzes the results of studies of the bi-directional relationship of the intestinal microbiota and kidneys, the so-called colorenal interactive axis of interaction.  The intestinal microbiota is considered as a kind of organ that influences the brain, cardiovascular and immune systems, as well as the kidneys of the "host".  Short-chain fatty acids (SCFA) formed in the colon as the result of microbial metabolism from plant components of dietary fiber and acting as ligands for the olfactory receptor, paired G-proteins in the kidneys are recognized as the markers of this symbiosis.  With the help of modern omix technologies, the development of dysbiosis taking into account patients with chronic kidney disease (CKD) has been proved, which leads to the accumulation of precursors of uremic toxins, a decrease in the production of SCFA, which have nephroprotective properties and play a key role in energy homeostasis.  Changes in the composition of the intestinal microbiota in CKD, an increase in the content of uremic toxins in the intestinal lumen contribute to the appearance of the “leaky” intestinal barrier syndrome, the movement of bacteria from the intestine into the general circulation, the development of systemic inflammation, oxidative stress, comorbidity, the progression of CKD, and an increase in mortality. Diets with restriction of protein and potassium quotas, violation of nutritional status lead to the development of dysbiosis in CKD.  A decrease in the diet of vegetables and fruit causes the expansion of bacteria producing uricase and urease, which are enzymes in the formation of uremic toxins and reduce the number and variety of bacteria producing short-chain fatty acids.  Potential targeted effects on the axis of “intestinal microbiota - chronic kidney disease” are being discussed: the use of a diet enriched in plant fibers, heat-treated, then chilled potatoes and rice as prebiotics (sources of resistant starch), nuts, plant seeds, and pro-, pre-, synbiotics, fecal transplantation.  Most of the proposed interventions in the structure and functions of the microbiota are not dangerous, side effects are minimal.

2017 ◽  
Vol 12 (15) ◽  
pp. 1413-1425 ◽  
Marta Esgalhado ◽  
Julie A Kemp ◽  
Nagila RT Damasceno ◽  
Denis Fouque ◽  
Denise Mafra

2020 ◽  
Vol 11 ◽  
Maha Al-Asmakh ◽  
Muhammad Umar Sohail ◽  
Ola Al-Jamal ◽  
Banan Mosaad Shoair ◽  
Asmaa Yousef Al-Baniali ◽  

Chronic kidney disease (CKD) may be fatal for its victims and is an important long-term public health problem. The complicated medical procedures and diet restrictions to which patients with CKD are subjected alter the gut microbiome in an adverse manner, favoring over-accumulation of proteolytic bacteria that produce ammonia and other toxic substances. The present study aimed to investigate the effect of GA on 1) the composition of the gut microbiome and 2) on plasma levels of short-chain fatty acids. Male Wister rats were divided into four groups (six each) and treated for 4 weeks based on the following: control, dietary adenine (0.75%, w/w) to induce CKD, GA in the drinking water (15%, w/v), and both adenine and GA. At the end of the treatment period, plasma, urine, and fecal samples were collected for determination of several biochemical indicators of renal function and plasma levels of short-chain fatty acids (SCFAs) as well as characterization of the gut microbiome. Dietary adenine induced the typical signs of CKD, i.e., loss of body weight and impairment of renal function, while GA alleviated these effects. The intestine of the rats with CKD contained an elevated abundance of pathogenic Proteobacteria, Actinobacteria, and Verrucomicrobia but lowered proportions of Lactobacillaceae belonging to the Firmicutes phylum. Plasma levels of propionate and butyrate were lowered by dietary adenine and restored by GA. A negative association (Spearman’s p-value ≤ 0.01, r ≤ 0.5) was observed between Firmicutes and plasma creatinine, urea, urine N-acetyl-beta-D-glucosaminidase (NAG) and albumin. Phylum Proteobacteria on the other hand was positively associated with these markers while Phylum Bacteroidetes was positively associated with plasma SCFAs. In conclusion, the adverse changes in the composition of the gut microbiome, plasma levels of SCFAs, and biochemical indicators of renal function observed in the rats with CKD induced by dietary adenine were mitigated by GA. These findings are indicative of a link between uremia and the composition of the microbiome in connection with this disease. Dietary administration of GA to patients with CKD may improve their renal function via modulating the composition of their microbiome—a finding that certainly warrants further investigation.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 802 ◽  
Per G Farup ◽  
Jørgen Valeur

The gut microbiota and their metabolites, e.g., short-chain fatty acids (SCFA), are associated with obesity. The primary aims were to study faecal SCFA levels and the changes in SCFA levels after weight-loss interventions in subjects with obesity, and secondarily, to study factors associated with the faecal SCFA levels. In total, 90 subjects (men / women: 15/75) with a mean age of 44.4 (SD 8.4) years, BMI 41.7 (SD 3.7) kg/m2 and morbid obesity (BMI > 40 or > 35 kg/m2 with obesity-related complications) were included. Faecal SCFA and other variables were measured at inclusion and after a six-month conservative weight-loss intervention followed by bariatric surgery (Roux-en-Y gastric bypass or gastric sleeve). Six months after surgery, the total amount of SCFA was reduced, the total and relative amounts of the main straight SCFA (acetic-, propionic-, and butyric- acids) were reduced, and the total and relative amounts of branched SCFA (isobutyric-, isovaleric-, and isocaproic- acids) were increased. The changes indicate a shift toward a proteolytic fermentation pattern with unfavorable health effects. The amount of SCFA was associated with the diet but not with metabolic markers or makers of the faecal microbiota composition. Dietary interventions could counteract the unfavorable effects.

2020 ◽  
pp. 153537022097995
Jisun HJ Lee ◽  
Jiangjiang Zhu

As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02566-18 ◽  
Nielson T. Baxter ◽  
Alexander W. Schmidt ◽  
Arvind Venkataraman ◽  
Kwi S. Kim ◽  
Clive Waldron ◽  

ABSTRACT Production of short-chain fatty acids (SCFAs), especially butyrate, in the gut microbiome is required for optimal health but is frequently limited by the lack of fermentable fiber in the diet. We attempted to increase butyrate production by supplementing the diets of 174 healthy young adults for 2 weeks with resistant starch from potatoes (RPS), resistant starch from maize (RMS), inulin from chicory root, or an accessible corn starch control. RPS resulted in the greatest increase in total SCFAs, including butyrate. Although the majority of microbiomes responded to RPS with increases in the relative abundance of bifidobacteria, those that responded with an increase in Ruminococcus bromii or Clostridium chartatabidum were more likely to yield higher butyrate concentrations, especially when their microbiota were replete with populations of the butyrate-producing species Eubacterium rectale. RMS and inulin induced different changes in fecal communities, but they did not generate significant increases in fecal butyrate levels. IMPORTANCE These results reveal that not all fermentable fibers are equally capable of stimulating SCFA production, and they highlight the importance of the composition of an individual’s microbiota in determining whether or not they respond to a specific dietary supplement. In particular, R. bromii or C. chartatabidum may be required for enhanced butyrate production in response to RS. Bifidobacteria, though proficient at degrading RS and inulin, may not contribute to the butyrogenic effect of those fermentable fibers in the short term.

ISRN Allergy ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Paul V. Licciardi ◽  
Katherine Ververis ◽  
Tom C. Karagiannis

Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

Sign in / Sign up

Export Citation Format

Share Document