scholarly journals Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia

2015 ◽  
Vol 6 ◽  
Author(s):  
María B. Sánchez
Author(s):  
Gökçe Kader Aslan ◽  
Fatma Esenkaya Taşbent ◽  
Metin Doğan

Objective: Stenotrophomonas maltophilia is an opportunistic pathogen that frequently causes nosocomial infections in recent years. It is generally isolated from respiratory tract samples, blood, urine and drainage materials. Due to multiple antibiotic resistance, a limited number of antibiotics are used in the treatment of these infections. The aim of this study is to investigate the antibiotic resistance status and risk factors in isolated S. maltophilia strains. Method: Diversity and antibiotic susceptibility levels of S. maltophilia strains isolated from various clinical samples between January 2018 and June 2020 were examined using conventional methods and VITEK2 automated system. Demographic and diagnostic data of the patients were retrieved from the hospital’s data base to identify the risk factors of infection. Results: Of the 300 strains examined, 46% were isolated from intensive care units, 35.3% from patients hospitalized in other clinics, and 18.7% from outpatient clinic patients. It was observed that 64 (21.3%) of 300 patients were immunosuppressed. Trimethoprim-sulfamethoxazole resistance was 1.3% and levofloxacin resistance was 0.7%. Conclusion: Resistance rates were found to be lower than the literature data in the study. It was concluded that hospitalization in the intensive care unit and immunosuppression are important risk factors for S. maltophilia infections.


2019 ◽  
Author(s):  
Teresa Gil-Gil ◽  
Fernando Corona ◽  
José Luis Martínez ◽  
Alejandra Bernardini

AbstractFosfomycin is a bactericidal antibiotic, analogous to phosphoenolpyruvate (PEP) that exerts its activity by inhibiting the activity of MurA. This enzyme catalyzes the first step of peptidoglycan biosynthesis, the transfer of enolpyruvate from PEP to uridine-diphosphate-N-acetylglucosamine. Fosfomycin is increasingly used in the last years, mainly for treating infections caused by Gram-negative multidrug resistant bacteria as Stenotrophomonas maltophilia, an opportunistic pathogen characterized by its low susceptibility to antibiotics of common use. The mechanisms of mutational resistance to fosfomycin in S. maltophilia were studied in the current work. None of the mechanisms so far described for other organisms, which include the production of fosfomycin inactivating enzymes, target modification, induction of alternative peptidoglycan biosynthesis pathway and the impaired entrance of the antibiotic, are involved in the acquisition of such resistance by this bacterial species. Rather the unique cause of resistance in the studied mutants is the mutational inactivation of different enzymes belonging to the Embden-Meyerhof-Parnas central metabolism pathway. The amount of intracellular fosfomycin accumulation did not change in any of these mutants showing that neither the inactivation nor the transport of the antibiotic were involved. Transcriptomic analysis also showed that the mutants did not present changes in the expression level of putative alternative peptidoglycan biosynthesis pathway genes neither any related enzyme. Finally, the mutants did not present an increased PEP concentration that might compete with fosfomycin for its binding to MurA. Based on these results, we describe a completely novel mechanism of antibiotic resistance based on the remodeling of S. maltophilia metabolism.SignificanceAntibiotic resistance (AR) has been largely considered as a specific bacterial response to an antibiotic challenge. Indeed, its study has been mainly concentrated in mechanisms that affect the antibiotics (mutations in transporters, the activity of efflux pumps and antibiotic modifying enzymes) or their targets (i.e.: target mutations, protection or bypass). Usually, AR-associated metabolic changes were considered to be a consequence (fitness costs) and not a cause of AR. Herein, we show that strong alterations in the bacterial metabolism can also be the cause of AR. In the study here presented, Stenotrophomonas maltophilia acquires fosfomycin resistance through the inactivation of glycolytic enzymes belonging to the Embden-Meyerhof-Parnas. Besides resistance to fosfomycin, this inactivation also impairs the bacterial gluconeogenic pathway. Together with previous work showing that AR can be under metabolic control, our results provide evidence that AR is intertwined with the bacterial metabolism.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shamshul Ansari ◽  
Rabindra Dhital ◽  
Sony Shrestha ◽  
Sangita Thapa ◽  
Ram Puri ◽  
...  

Introduction. Pseudomonas aeruginosais the most frequently isolated organism as it acts as the opportunistic pathogen and can cause infections in immunosuppressed patients. The production of different types of beta-lactamases renders this organism resistant to many commonly used antimicrobials. Therefore, the aim of this study was to document the antibiotic resistance rate inPseudomonas aeruginosaisolated from different clinical specimens.Methods. Pseudomonas aeruginosarecovered was identified by standard microbiological methods. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines and all the suspected isolates were tested for the production of ESBLs, MBLs, and AmpC.Results.Out of total (178) isolates, 83.1% were recovered from the inpatient department (IPD). Majority of the isolates mediated resistance towards the beta-lactam antibiotics, while nearly half of the isolates were resistant to ciprofloxacin. Most of the aminoglycosides used showed resistance rate up to 75% but amikacin proved to be better option. No resistance to polymyxin was observed. ESBLs, MBLs, and AmpC mediated resistance was seen in 33.1%, 30.9%, and 15.7% isolates, respectively.Conclusions. Antibiotic resistance rate and beta-lactamase mediated resistance were high. Thus, regular surveillance of drug resistance is of utmost importance.


2020 ◽  
Author(s):  
Lucas A. Meirelles ◽  
Elena K. Perry ◽  
Megan Bergkessel ◽  
Dianne K. Newman

SummaryAs antibiotic-resistant infections become increasingly prevalent worldwide, understanding the factors that lead to antimicrobial treatment failure is essential to optimizing the use of existing drugs. Opportunistic human pathogens in particular typically exhibit high levels of intrinsic antibiotic resistance and tolerance1, leading to chronic infections that can be nearly impossible to eradicate2. We asked whether the recalcitrance of these organisms to antibiotic treatment could be driven in part by their evolutionary history as environmental microbes, which frequently produce or encounter natural antibiotics3,4. Using the opportunistic pathogen Pseudomonas aeruginosa as a model, we demonstrate that the self-produced natural antibiotic pyocyanin (PYO) activates bacterial defenses that confer collateral tolerance to certain synthetic antibiotics, including in a clinically-relevant growth medium. Non-PYO-producing opportunistic pathogens isolated from lung infections similarly display increased antibiotic tolerance when they are co-cultured with PYO-producing P. aeruginosa. Furthermore, we show that beyond promoting bacterial survival in the presence of antibiotics, PYO can increase the apparent rate of mutation to antibiotic resistance by up to two orders of magnitude. Our work thus suggests that bacterial production of natural antibiotics in infections could play an important role in modulating not only the immediate efficacy of clinical antibiotics, but also the rate at which antibiotic resistance arises in multispecies bacterial communities.


2019 ◽  
Author(s):  
Sanjeet Kumar ◽  
Kanika Bansal ◽  
Prashant P. Patil ◽  
Amandeep Kaur ◽  
Satinder Kaur ◽  
...  

ABSTRACTWe report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.Impact StatementThe hospital settings in India have one of the highest usage of antimicrobials and heavy patient load. Our finding of a novel clinical isolate of S. maltophilia complex with two super-integrons harbouring array of antibiotic resistance genes along with antimicrobials resistance genes indicates the extent and the nature of selection pressures in action. Further, the presence of ISCR type of transposable elements on both integrons not only indicates its propensity to transfer resistome but also their chromosomal origin suggests possibilities for further genomic/phenotypic complexities. Such complex cassettes and strain are potential threat to global health care. Hence, there is an urgent need to employ cost-effective long read technologies to keep vigilance on novel and extreme antimicrobial resistance pathogens in populous countries. There is also need for surveillance for usage of antimicrobials for hygiene and linked/rapid co-evolution of extreme drug resistance in nosocomial pathogens. Our finding of the chromosomal encoding XDR will shed a light on the need of hour to understand the evolution of an opportunistic nosocomial pathogen belonging to S. maltophilia.RepositoriesComplete genome sequence of Stenotrophomonas maltophilia SM866: CP031058


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Teresa Gil-Gil ◽  
Fernando Corona ◽  
José Luis Martínez ◽  
Alejandra Bernardini

ABSTRACT Fosfomycin is a bactericidal antibiotic, analogous to phosphoenolpyruvate, that exerts its activity by inhibiting the activity of MurA. This enzyme catalyzes the first step of peptidoglycan biosynthesis, the transfer of enolpyruvate from phosphoenolpyruvate to uridine-diphosphate-N-acetylglucosamine. Fosfomycin is increasingly being used, mainly for treating infections caused by Gram-negative multidrug-resistant bacteria. The mechanisms of mutational resistance to fosfomycin in Stenotrophomonas maltophilia, an opportunistic pathogen characterized by its low susceptibility to commonly used antibiotics, were studied in the current work. None of the mechanisms reported so far for other organisms, which include the production of fosfomycin-inactivating enzymes, target modification, induction of an alternative peptidoglycan biosynthesis pathway, and the impaired entry of the antibiotic, are involved in the acquisition of such resistance by this bacterial species. Instead, the unique cause of resistance in the mutants studied is the mutational inactivation of different enzymes belonging to the Embden-Meyerhof-Parnas central metabolism pathway. The amount of intracellular fosfomycin accumulation did not change in any of these mutants, showing that neither inactivation nor transport of the antibiotic is involved. Transcriptomic analysis also showed that the mutants did not present changes in the expression level of putative alternative peptidoglycan biosynthesis pathway genes or any related enzyme. Finally, the mutants did not present an increased phosphoenolpyruvate concentration that might compete with fosfomycin for its binding to MurA. On the basis of these results, we describe a completely novel mechanism of antibiotic resistance based on mutations of genes encoding metabolic enzymes. IMPORTANCE Antibiotic resistance has been largely considered a specific bacterial response to an antibiotic challenge. Indeed, its study has been mainly concentrated on mechanisms that affect the antibiotics (mutations in transporters, efflux pumps, and antibiotic-modifying enzymes, or their regulators) or their targets (i.e., target mutations, protection, or bypass). Usually, antibiotic resistance-associated metabolic changes were considered a consequence (fitness costs) and not a cause of antibiotic resistance. Herein, we show that alterations in the central carbon bacterial metabolism can also be the cause of antibiotic resistance. In the study presented here, Stenotrophomonas maltophilia acquires fosfomycin resistance through the inactivation of glycolytic enzymes belonging to the Embden-Meyerhof-Parnas pathway. Besides resistance to fosfomycin, this inactivation also impairs the bacterial gluconeogenic pathway. Together with previous work showing that antibiotic resistance can be under metabolic control, our results provide evidence that antibiotic resistance is intertwined with the bacterial metabolism.


2018 ◽  
Vol 19 (1) ◽  
pp. 179-190
Author(s):  
R. Destiani ◽  
M. R. Templeton

Abstract This study assessed the occurrence and prevalence of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) in tap water sampled across London, United Kingdom. Sampling was conducted seasonally from nine locations spread geographically across the city. ARBs and ARGs (tet(A), dfrA7, and sul1) were detected in all sampling locations in all sampling rounds. Resistance to trimethoprim was the highest among the tested antibiotics and the sul1 gene was the most abundant resistance gene detected. Several opportunistic pathogens were identified amongst the ARBs in the water samples, including Pseudomonas aeruginosa and Stenotrophomonas maltophilia.


Sign in / Sign up

Export Citation Format

Share Document