scholarly journals A Major Facilitator Superfamily Peptide Transporter From Fusarium oxysporum Influences Bioethanol Production From Lignocellulosic Material

2019 ◽  
Vol 10 ◽  
Author(s):  
Brian Nugent ◽  
Shahin S. Ali ◽  
Ewen Mullins ◽  
Fiona M. Doohan
Author(s):  
Reina Nagamura ◽  
Masahiro Fukuda ◽  
Akihiro Kawamoto ◽  
Kyoko Matoba ◽  
Naoshi Dohmae ◽  
...  

Proton-dependent oligopeptide transporters (POTs) belong to the major facilitator superfamily (MFS) and transport dipeptides and tripeptides from the extracellular environment into the target cell. The human POTs PepT1 and PepT2 are also involved in the absorption of various orally ingested drugs. Previously reported structures revealed that the bacterial POTs possess 14 helices, of which H1–H6 and H7–H12 constitute the typical MFS fold and the residual two helices are involved in the cytoplasmic linker. PepTSo2 from Shewanella oneidensis is a unique POT which reportedly assembles as a 200 kDa tetramer. Although the previously reported structures suggested the importance of H12 for tetramer formation, the structural basis for the PepTSo2-specific oligomerization remains unclear owing to the lack of a high-resolution tetrameric structure. In this study, the expression and purification conditions for tetrameric PepTSo2 were optimized. A single-particle cryo-EM analysis revealed the tetrameric structure of PepTSo2 incorporated into Salipro nanoparticles at 4.1 Å resolution. Furthermore, a combination of lipidic cubic phase (LCP) crystallization and an automated data-processing system for multiple microcrystals enabled crystal structures of PepTSo2 to be determined at resolutions of 3.5 and 3.9 Å. The present structures in a lipid bilayer revealed the detailed mechanism for the tetrameric assembly of PepTSo2, in which a characteristic extracellular loop (ECL) interacts with two asparagine residues on H12 which were reported to be important for tetramerization and plays an essential role in oligomeric assembly. This study provides valuable insights into the oligomerization mechanism of this MFS-type transporter, which will further pave the way for understanding other oligomeric membrane proteins.


2020 ◽  
Author(s):  
Tanya Lasitza Male ◽  
Kim Bartels ◽  
Felix Wiggers ◽  
Gabriel Rosenblum ◽  
Jakub Jungwirth ◽  
...  

AbstractWhile structural biology aims at explaining the biological function of membrane proteins with their structure, it is unclear how these proteins are modulated by the complex lipid composition of membranes. Here, we address this question by mapping the conformational distribution of the bacterial oligopeptide transporter DtpA using single-molecule fluorescence spectroscopy. We show that DtpA populates ensembles of conformers that respond sensitively to the environment. Detergents trap the transporter in an inward-open ensemble in which the substrate binding site faces the cytosol. However, re-constitution in Saposin nanoparticles with different lipid compositions, reveal a plethora of alternative conformations, including a fully inward-open ensemble whose existence had not been anticipated before. The relative abundance of these ensembles depends on the lipid composition of the nanoparticles. Our results therefore demonstrate that membranes sensitively affect the structural distribution of DtpA and we expect this to be a general property of membrane proteins.


Microbiology ◽  
2020 ◽  
Vol 166 (10) ◽  
pp. 936-946 ◽  
Author(s):  
A. Castillo-Castañeda ◽  
S. J. Cañas-Duarte ◽  
M. Guevara-Suarez ◽  
J. Guarro ◽  
S. Restrepo ◽  
...  

Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Diao ◽  
Shuxuan Li ◽  
Ling Ma ◽  
Ping Zhang ◽  
Jianyang Bai ◽  
...  

The major facilitator superfamily (MFS) is one of the largest known membrane transporter families. MFSs are involved in many essential functions, but studies on the MFS family in poplar have not yet been reported. Here, we identified 41 MFS genes from Populus trichocarpa (PtrMFSs). We built a phylogenetic tree, which clearly divided members of PtrMFS into six groups with specific gene structures and protein motifs/domains. The promoter regions contain various cis-acting elements involved in stress and hormone responsiveness. Genes derived from segmental duplication events are unevenly distributed in 17 poplar chromosomes. Collinearity analysis showed that PtrMFS genes are conserved and homologous to corresponding genes from four other species. Transcriptome data indicated that 40 poplar MFS genes were differentially expressed when treated with Fusarium oxysporum. Co-expression networks and gene function annotations of MFS genes showed that MFS genes tightly co-regulated and closely related in function of transmembrane transport. Taken together, we systematically analyzed structure and function of genes and proteins in the PtrMFS family. Evidence indicated that poplar MFS genes play key roles in plant development and response to a biological stressor.


2020 ◽  
Vol 15 (15) ◽  
pp. 1465-1481
Author(s):  
Hariprasath Prakash ◽  
Ponmurugan Karuppiah ◽  
Naif A Al-Dhabi ◽  
Gandham S Prasad ◽  
Chandan Badapanda ◽  
...  

Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.


2021 ◽  
Author(s):  
Maxime Killer ◽  
Jiri Wald ◽  
Joana Pieprzyk ◽  
Thomas C Marlovits ◽  
Christian Loew

The uptake of peptides in mammals plays a crucial role in nutrition and inflammatory diseases. This process is mediated by promiscuous transporters of the Solute Carrier Family 15, which form part of the Major Facilitator superfamily. Besides the uptake of short peptides, Peptide transporter 1 (PepT1) is a highly abundant drug transporter in the intestine and represents a major route for oral drug delivery. Peptide transporter 2 (PepT2) allows in addition renal drug reabsorption from ultrafiltration and brain-to-blood efflux of neurotoxic compounds. Here we present cryo-EM structures of human PepT1 in an outward open state and of human PepT2 in an inward facing partially occluded state with a bound substrate. The structures reveal the architecture of human peptide transporters and provide mechanistic insights into substrate recognition and conformational transitions during transport. Importantly, this may support future drug design efforts to increase the bioavailability of different drugs in the human body.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2021 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
Min Liang ◽  
Wei Li ◽  
Landa Qi ◽  
Guocan Chen ◽  
Lei Cai ◽  
...  

Fungi from unique environments exhibit special physiological characters and plenty of bioactive natural products. However, the recalcitrant genetics or poor transformation efficiencies prevent scientists from systematically studying molecular biological mechanisms and exploiting their metabolites. In this study, we targeted a guanophilic fungus Amphichorda guana LC5815 and developed a genetic transformation system. We firstly established an efficient protoplast preparing method by conditional optimization of sporulation and protoplast regeneration. The regeneration rate of the protoplast is up to about 34.6% with 0.8 M sucrose as the osmotic pressure stabilizer. To develop the genetic transformation, we used the polyethylene glycol-mediated protoplast transformation, and the testing gene AG04914 encoding a major facilitator superfamily transporter was deleted in strain LC5815, which proves the feasibility of this genetic manipulation system. Furthermore, a uridine/uracil auxotrophic strain was created by using a positive screening protocol with 5-fluoroorotic acid as a selective reagent. Finally, the genetic transformation system was successfully established in the guanophilic fungus strain LC5815, which lays the foundation for the molecular genetics research and will facilitate the exploitation of bioactive secondary metabolites in fungi.


Sign in / Sign up

Export Citation Format

Share Document