scholarly journals Type IV Pili-Independent Photocurrent Production by the Cyanobacterium Synechocystis sp. PCC 6803

2020 ◽  
Vol 11 ◽  
Author(s):  
Miyuki A. Thirumurthy ◽  
Andrew Hitchcock ◽  
Angelo Cereda ◽  
Jiawei Liu ◽  
Marko S. Chavez ◽  
...  
2020 ◽  
Author(s):  
Sabrina Oeser ◽  
Thomas Wallner ◽  
Nils Schuergers ◽  
Annegret Wilde ◽  
Lenka Bucinska ◽  
...  

Cyanobacteria synthesize type IV pili, which are known to be essential for motility, adhesion and natural competence. They consist of long flexible fibres that are primarily composed of the major pilin PilA1 in Synechocystis sp. PCC 6803. In addition, Synechocystis encodes less abundant pilin-like proteins, which are known as minor pilins. The transcription of the minor pilin genes pilA5, pilA6 and pilA9-pilA11 is inversely regulated in response to different conditions. In this study, we show that the minor pilin PilA5 is essential for natural transformation but is dispensable for motility and flocculation. In contrast, a set of minor pilins encoded by the pilA9-slr2019 transcriptional unit are necessary for motility but are dispensable for natural transformation. Neither pilA5-pilA6 nor pilA9-slr2019 are essential for pilus assembly as mutant strains showed type IV pili on the cell surface. Microarray analysis demonstrated that the transcription levels of known and newly predicted minor pilin genes change in response to surface contact. A total of 120 genes were determined to have altered transcription between planktonic and surface growth. Among these genes, 13 are located on the pSYSM plasmid. The results of our study indicate that different minor pilins facilitate distinct pilus functions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Nils Schuergers ◽  
Tchern Lenn ◽  
Ronald Kampmann ◽  
Markus V Meissner ◽  
Tiago Esteves ◽  
...  

Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world’s smallest and oldest example of a camera eye.


2017 ◽  
Author(s):  
Anchal Chandra ◽  
Lydia-Maria Joubert ◽  
Devaki Bhaya

AbstractControlling the transition from a multicellular motile state to a sessile biofilm is an important eco-physiological decision for most prokaryotes, including cyanobacteria. Photosynthetic and bio geochemically significant cyanobacterium Synechocystis sp. PCC6803 (Syn6803) uses Type IV pili (TFP) for surface-associated motility and light-directed phototaxis. We report the identification of a novel Chaperone-Usher (CU) system in Syn6803 that regulate secretion of minor pilins as a means of stabilizing TFP morphology. These secreted minor-pilins aid in modifying TFP morphology to suit the adhesion state by forming cell to surface contacts when motility is not required. This morphotype is structurally distinct from TFP assembled during motile phase. We further demonstrate by examining mutants lacking either the CU system or the minor-pilins, which produce aberrant TFP, that are morphologically and functionally distinct from wild-type (WT). Thus, here we report that in Syn6803, CU system work independent of TFP biogenesis machinery unlike reported for other pathogenic bacterial systems and contributes to provide multifunctional plasticity to TFP. cAMP levels play an important role in controlling this switch. This phenotypic plasticity exhibited by the TFP, in response to cAMP levels would allow cells and cellular communities to adapt to rapidly fluctuating environments by dynamically transitioning between motile and sessile states.Significance of this workHow cyanobacterial communities cope with fluctuating or extreme environments is crucial in understanding their role in global carbon and nitrogen cycles. This work addresses the key question: how do cyanobacteria modulate external appendages, called Type IV pili, to effectively switch between motile and sessile biofilm states? We demonstrate that cells transition between forming strong cell-surface interactions indispensable for biofilm formation to forming cell-cell interactions that allow for coordinated movement crucial for social motility by functional/ structural modification of same TFP appendage. The second messenger, cAMP and a Chaperone-Usher secretion are indispensible to achieve these structural modifications of TFP and control the complex phenotypic transition. We have uncovered a strategy that Syn6803 has evolved to deal with molecular decision-making under uncertainty, which we call phenotypic plasticity. Here we demonstrate how a single motility appendage can be structurally modified to attain two antagonistic functions in order to meet the fluctuating environmental demands.


Microbiology ◽  
2006 ◽  
Vol 152 (12) ◽  
pp. 3623-3631 ◽  
Author(s):  
Kenlee Nakasugi ◽  
Charles J. Svenson ◽  
Brett A. Neilan

The gene slr0388 was previously annotated to encode a hypothetical protein in Synechocystis sp. strain PCC 6803. When a positively phototactic strain of this cyanobacterium was insertionally inactivated at slr0388, the mutants were not transformable, and appeared to aggregate as a result of increased bundling of type IV pili. Also, these mutants were rendered non-phototactic compared to the wild-type. Quantitative real-time PCR revealed a 3.5-fold increase in pilA1 transcript levels in the mutant over wild-type cells, while there were no changes in the level of pilT1 and comA transcripts. Supernatant from mutant liquid culture contained more PilA1 protein, confirmed by mass spectrometric analysis, compared to the wild-type cells, which corresponded to the increase in pilA1 transcripts. The increase in PilA1 subunits may contribute to the bundling morphology of pili that was observed, which in turn may act to retard DNA uptake by hindering the retraction of pili. This gene is therefore proposed to be designated comF, as it possesses a phosphoribosyltransferase domain, a distinguishing feature of other ComF proteins of naturally transformable heterotrophic bacteria. This report is the second of a competence-related gene from Synechocystis sp. strain PCC 6803, the product of which does not show homology to other well-studied type IV pili proteins.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Ivana Cengic ◽  
Mathias Uhlén ◽  
Elton P. Hudson

ABSTRACT Functional surface display of small affinity proteins, namely, affibodies (6.5 kDa), was evaluated for the model cyanobacterium Synechocystis sp. strain PCC 6803 through anchoring to native surface structures. These structures included confirmed or putative subunits of the type IV pili, the S-layer protein, and the heterologous Escherichia coli autotransporter antigen 43 system. The most stable display system was determined to be through C-terminal fusion to PilA1, the major type IV pilus subunit in Synechocystis, in a strain unable to retract these pili (ΔpilT1). Type IV pilus synthesis was upheld, albeit reduced, when fusion proteins were incorporated. However, pilus-mediated functions, such as motility and transformational competency, were negatively affected. Display of affibodies on Synechocystis and the complementary anti-idiotypic affibodies on E. coli or Staphylococcus carnosus was able to mediate interspecies cell-cell binding by affibody complex formation. The same strategy, however, was not able to drive cell-cell binding and aggregation of Synechocystis-only mixtures. Successful affibody tagging of the putative minor pilin PilA4 showed that it locates to the type IV pili in Synechocystis and that its extracellular availability depends on PilA1. In addition, affibody tagging of the S-layer protein indicated that the domains responsible for the anchoring and secretion of this protein are located at the N and C termini, respectively. This study can serve as a basis for future surface display of proteins on Synechocystis for biotechnological applications. IMPORTANCE Cyanobacteria are gaining interest for their potential as autotrophic cell factories. Development of efficient surface display strategies could improve their suitability for large-scale applications by providing options for designed microbial consortia, cell immobilization, and biomass harvesting. Here, surface display of small affinity proteins was realized by fusing them to the major subunit of the native type IV pili in Synechocystis sp. strain PCC 6803. The display of complementary affinity proteins allowed specific cell-cell binding between Synechocystis and Escherichia coli or Staphylococcus carnosus. Additionally, successful tagging of the putative pilin PilA4 helped determine its localization to the type IV pili. Analogous tagging of the S-layer protein shed light on the regions involved in its secretion and surface anchoring.


Sign in / Sign up

Export Citation Format

Share Document