scholarly journals Multidrug Resistant Klebsiella pneumoniae ST101 Clone Survival Chain From Inpatients to Hospital Effluent After Chlorine Treatment

2021 ◽  
Vol 11 ◽  
Author(s):  
Laura Ioana Popa ◽  
Irina Gheorghe ◽  
Ilda Czobor Barbu ◽  
Marius Surleac ◽  
Simona Paraschiv ◽  
...  

In this paper we describe the transmission of a multi-drug resistant Klebsiella pneumoniae ST101 clone from hospital to wastewater and its persistence after chlorine treatment. Water samples from influents and effluents of the sewage tank of an infectious diseases hospital and clinical strains collected from the intra-hospital infections, during a period of 10 days prior to wastewater sampling were analyzed. Antibiotic resistant K. pneumoniae strains from wastewaters were recovered on selective media. Based on antibiotic susceptibility profiles and PCR analyses of antibiotic resistance (AR) genetic background, as well as whole-genome sequencing (Illumina MiSeq) and subsequent bioinformatic analyses, 11 ST101 K. pneumoniae strains isolated from hospital wastewater influent, wastewater effluent and clinical sector were identified as clonally related. The SNP and core genome analyses pointed out that five strains were found to be closely related (with ≤18 SNPs and identical cgMLST profile). The strains belonging to this clone harbored multiple acquired AR genes [blaCTX–M–15, blaOXA–48, blaOXA–1, blaSHV–106, blaTEM–150, aac(3)-IIa, aac(6′)-Ib-cr, oqxA10, oqxB17, fosA, catB3, dfrA14, tet(D)] and chromosomal mutations involved in AR (ΔmgrB, ΔompK35, amino acid substitutions in GyrA Ser83Tyr, Asp87Asn, ParC Ser80Tyr). Twenty-nine virulence genes involved in iron acquisition, biofilm and pili formation, adherence, and the type six secretion system – T6SS-III were identified. Our study proves the transmission of MDR K. pneumoniae from hospital to the hospital effluent and its persistence after the chlorine treatment, raising the risk of surface water contamination and further dissemination to different components of the trophic chain, including humans.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S782-S782
Author(s):  
Sailaja Puttagunta ◽  
Maya Kahan-Haanum ◽  
Sharon Kredo-Russo ◽  
Eyal Weinstock ◽  
Efrat Khabra ◽  
...  

Abstract Background The prevalence of extended-spectrum beta-lactamase (ESBL) producing and carbapenem resistant (CR) Klebsiella pneumoniae (KP) has significantly risen in all geographic regions. Infections due to these bacteria are associated with high mortality across different infection types. Even with newer options, there remains an unmet need for safe and effective therapeutic options to treat infections caused by ESBL and CR KP. Phage therapy offers a novel approach with an unprecedented and orthogonal mechanism of action for treatment of diseases caused by pathogenic bacterial strains that are insufficiently addressed by available antibiotics. Phage-based therapies confer a high strain-level specificity and have a strong intrinsic safety profile. Here we describe the identification of novel phages that can effectively target antibiotic resistant KP strains. Host range of the 21 phages on 33 strain KP panel via solid culture infectivity assays. Red marks resistance to infection while sensitivity to phage is marked in green Methods KP clinical strains were isolated from human stool specimens preserved in glycerol. Selective culturing was carried, followed by testing of individual colonies for motility, indole and urease production, sequenced and analyzed by Kleborate tool to determine antibiotic resistant genes. Natural phages were isolated from plaques that developed on susceptible bacterial targets, sequenced and characterized. Results Antibiotic-resistant KP strains encoding beta lactamase genes or a carbapenemase (n=33) were isolated from healthy individuals (n=3), and patients with inflammatory bowel disease (n=26) or primary sclerosing cholangitis (n=3). Isolates sequencing revealed bla CTX-M15 and/or bla SHV encoding strains and carbapenamase KPC-2. A panel of 21 phages targeting the beta-lactamase- and carbapenemase-producing KP strains were identified. Phage sequencing revealed that all phages belong to the Caudovirales order and include 6 Siphoviridae, 14 Myoviridae, and 1 Podoviridae. In vitro lytic activity of the phages was tested on the isolated bacteria and revealed a coverage of 70% of the 33 isolated antibiotic resistant strains, >50% of which were targeted by multiple phages. Conclusion Collectively, these results demonstrate the feasibility of identifying phage with potent activity against antibiotic resistant KP strains, and may provide a novel therapeutic approach for treatment of ESBL and CR KP infections. Disclosures All Authors: No reported disclosures


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Roberto Adamo ◽  
Immaculada Margarit

ABSTRACT Antibiotics and vaccines have greatly impacted human health in the last century by dramatically reducing the morbidity and mortality associated with infectious diseases. The recent challenge posed by the emergence of multidrug-resistant bacteria could possibly be addressed by novel immune prophylactic and therapeutic approaches. Among the newly threatening pathogens, Klebsiella pneumoniae is particularly worrisome in the nosocomial setting, and its surface polysaccharides are regarded as promising antigen candidates. The majority of Klebsiella carbapenem-resistant strains belong to the sequence type 158 (ST258) lineage, with two main clades expressing capsular polysaccharides CPS1 and CPS2. In a recent article, S. D. Kobayashi and colleagues (mBio 9:e00297-18, 2018, https://doi.org/10.1128/mBio.00297-18) show that CPS2-specific IgGs render ST258 clade 2 bacteria more sensitive to human serum and phagocytic killing. E. Diago-Navarro et al. (mBio 9:e00091-18, 2018, https://doi.org/10.1128/mBio.00091-18) generated two murine monoclonal antibodies recognizing distinct glycotopes of CPS2 that presented functional activity against multiple ST258 strains. These complementary studies represent a step toward the control of this dangerous pathogen.


2019 ◽  
Vol 8 (19) ◽  
Author(s):  
Katherine T. Nguyen ◽  
Rachele Bonasera ◽  
Garret Benson ◽  
Adriana C. Hernandez-Morales ◽  
Jason J. Gill ◽  
...  

May is a newly isolated myophage that infects multidrug-resistant strains of Klebsiella pneumoniae, a pathogen that is associated with antibiotic-resistant infections in humans. The genome of May has been shown to be similar to that of phage Vi01.


2019 ◽  
Vol 69 (11) ◽  
pp. 2015-2018 ◽  
Author(s):  
Ran Nir-Paz ◽  
Daniel Gelman ◽  
Ayman Khouri ◽  
Brittany M Sisson ◽  
Joseph Fackler ◽  
...  

Abstract A patient with a trauma-related left tibial infection associated with extensively drug-resistant Acinetobacter baumannii and multidrug-resistant Klebsiella pneumoniae was treated with bacteriophages and antibiotics. There was rapid tissue healing and positive culture eradication. As a result, the patient’s leg did not have to be amputated and he is undergoing rehabilitation.


2021 ◽  
Vol 26 (21) ◽  
Author(s):  
Sophie Alexandra Baron ◽  
Nadim Cassir ◽  
Mouna Hamel ◽  
Linda Hadjadj ◽  
Nadia Saidani ◽  
...  

Background France is a low prevalence country for colistin resistance. Molecular and epidemiological events contributing to the emergence of resistance to colistin, one of the 'last-resort' antibiotics to treat multidrug-resistant Gram-negative infections, are important to investigate. Aim This retrospective (2014 to 2017) observational study aimed to identify risk factors associated with acquisition of colistin-resistant Klebsiella pneumoniae (CRKP) in hospitals in Marseille, France, and to molecularly characterise clinical isolates. Methods To identify risk factors for CRKP, a matched-case–control (1:2) study was performed in two groups of patients with CRKP or colistin-susceptible K. pneumoniae respectively. Whole-genome-sequences (WGS) of CRKP were compared with 6,412 K. pneumoniae genomes available at the National Center for Biotechnology Information (NCBI). Results Multivariate analysis identified male sex and contact with a patient carrying a CRKP as significant independent factors (p < 0.05) for CRKP acquisition, but not colistin administration. WGS of nine of 14 CRKP clinical isolates belonged to the same sequence type (ST)307. These isolates were from patients who had been hospitalised in the same wards, suggesting an outbreak. Comparison of the corresponding strains’ WGS to K. pneumoniae genomes in NCBI revealed that in chromosomal genes likely playing a role in colistin resistance, a subset of five specific mutations were significantly associated with ST307 (p < 0.001). Conclusion A ST307 CRKP clone was identified in this study, with specific chromosomal mutations in genes potentially implicated in colistin resistance. ST307 might have a propensity to be or become resistant to colistin, however confirming this requires further investigations.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 979
Author(s):  
Nadezhda K. Fursova ◽  
Evgenii I. Astashkin ◽  
Olga N. Ershova ◽  
Irina A. Aleksandrova ◽  
Ivan A. Savin ◽  
...  

The purpose of this study was the identification of genetic lineages and antimicrobial resistance (AMR) and virulence genes in Klebsiella pneumoniae isolates associated with severe infections in the neuro-ICU. Susceptibility to antimicrobials was determined using the Vitek-2 instrument. AMR and virulence genes, sequence types (STs), and capsular types were identified by PCR. Whole-genome sequencing was conducted on the Illumina MiSeq platform. It was shown that K. pneumoniae isolates of ST14K2, ST23K57, ST39K23, ST76K23, ST86K2, ST218K57, ST219KL125/114, ST268K20, and ST2674K47 caused severe systemic infections, including ST14K2, ST39K23, and ST268K20 that were associated with fatal incomes. Moreover, eight isolates of ST395K2 and ST307KL102/149/155 were associated with manifestations of vasculitis and microcirculation disorders. Another 12 K. pneumoniae isolates of ST395K2,KL39, ST307KL102/149/155, and ST147K14/64 were collected from patients without severe systemic infections. Major isolates (n = 38) were XDR and MDR. Beta-lactamase genes were identified: blaSHV (n = 41), blaCTX-M (n = 28), blaTEM (n = 21), blaOXA-48 (n = 21), blaNDM (n = 1), and blaKPC (n = 1). The prevalent virulence genes were wabG (n = 41), fimH (n = 41), allS (n = 41), and uge (n = 34), and rarer, detected only in the genomes of the isolates causing severe systemic infections—rmpA (n = 8), kfu (n = 6), iroN (n = 5), and iroD (n = 5) indicating high potential of the isolates for hypervirulence.


Author(s):  
Sophie Alexandra Baron ◽  
Oleg Mediannikov ◽  
Rim Abdallah ◽  
Edmond Kuete Yimagou ◽  
Hacène Medkour ◽  
...  

Antibiotic resistance genes exist naturally in various environments far from human usage. Here, we investigated multidrug-resistant Klebsiella pneumoniae, a common pathogen of chimpanzees and humans. We screened antibiotic-resistant K. pneumoniae from 48 chimpanzee stools and 38 termite mounds (N=415 samples) collected in protected areas in Senegal. The microsatellite method was used to identify chimpanzee individuals (N=13). Whole genome sequencing was performed on K. pneumoniae complex isolates to identify antibiotic-resistant genes and characterize clones. We found a high prevalence of carbapenem-resistant K. pneumoniae among chimpanzee isolates (18/48 samples from 7/13 individuals) and ceftriaxone resistance among both chimpanzee individuals (19/48) and termite mounds (7/415 termites and 3/38 termite mounds). The bla OXA-48 and the bla KPC-2 genes were carried by international pOXA-48 and pKPC-2 plasmids respectively. The ESBL plasmid carried bla CTX-M-15 , bla TEM-1B and bla OXA-1 genes. Genome sequencing of 56 isolates identified two major clones associated with hospital-acquired infections of K. pneumoniae (ST307 and ST147) in chimpanzees and termites, suggesting circulation of strains between the two species, as chimpanzees feed on termites. The source and selection pressure of these clones in this environment need to be explored.


2008 ◽  
Vol 57 (12) ◽  
pp. 1508-1513 ◽  
Author(s):  
Sanjay Chhibber ◽  
Sandeep Kaur ◽  
Seema Kumari

Klebsiella pneumoniae causes infections in humans especially in immunocompromised patients. About 80 % of nosocomial infections caused by K. pneumoniae are due to multidrug-resistant strains. The emergence of antibiotic-resistant bacterial strains necessitates the exploration of alternative antibacterial therapies, which led our group to study the ability of bacterial viruses (known as bacteriophages or simply phages) to treat mice challenged with K. pneumoniae. Phage SS specific for K. pneumoniae B5055 was isolated and characterized, and its potential as a therapeutic agent was evaluated in an experimental model of K. pneumoniae-mediated lobar pneumonia in mice. Mice were challenged by intranasal (i.n.) inoculation with bacteria (108 c.f.u. ml−1). A single intraperitoneal injection of 1010 p.f.u. ml−1 phage administered immediately after i.n. challenge was sufficient to rescue 100 % of animals from K. pneumoniae-mediated respiratory infections. Administration of the phage preparation 3 h prior to i.n. bacterial challenge provided significant protection in infected mice, while even 6 h delay of phage administration after the induction of infection rendered the phage treatment ineffective. The results of this study therefore suggest that the timing of starting the phage therapy after initiation of infection significantly contributes towards the success of the treatment.


2019 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Yousif Abdullah AlBany ◽  
Mohammad Ismail Al-Berfkani ◽  
Mahde Saleh Assaf

Klebsiella pneumoniae causes infection in human, especially in immunocompromised patients. About 80% of nosocomial infection caused by K. pneumoniae is due to multidrug-resistant strain. The emergence of antibiotic-resistant bacterial strains necessitates the exploration of alternative antibacterial therapies, which led to studying the ability of viruses that infect the bacteria (known as bacteriophage) to treat infection with K. pneumoniae. Bacterial biofilm which are crucial in the pathogenesis of much clinically important infection and are difficult to eradicate because they exist resistant to many antimicrobial treatment. Biofilm formation by K. pneumoniae is responsible for the catheter associated infection such as urinary tract infection and respiratory tract infection due to the colonization of the polymeric surface by forming multilayered cell cluster embedded in extracellular materials. In this study K. pneumoniae isolated from the hospital environment and characterized it and form the biofilm of that organism by microplate quantitative assay. Similarly bacteriophage specific for K. pneumoniae isolated from river water. The aim of work is the use of bacteriophage as a possible alternative for the treatment of bacterial infection of K. pneumoniae. We showed that biofilm is reduced by isolated phages by the comparative account of colony-forming unit versus plaque-forming unit. The result of this study, therefore, suggests that the timing of starting the phage therapy after initiation of infection significantly contributes toward the success of the treatment.


Author(s):  
PV Evseev ◽  
MM Shneider ◽  
YuV Mikhailova ◽  
AA Shelenkov ◽  
YuG Yanushevich ◽  
...  

Multidrug-resistant Klebsiella pneumoniae strains are one of the major causes of nosocomial infections caused by the antibiotic-resistant bacteria. There are different options for dealing with this threat, among which is the clinical application of bacteriophages. The study was aimed to isolate and describe a virulent bactriophage, having the potential for therapeutic use. The standard phage biology and bioinformatic methods were used, which included the advanced techniques for protein structure prediction (AlphaFold software), and electron microscopy. The virulent podovirus KPPK108.1, being the member of genus Drulisvirus, which is able to specifically infect the K. pneumoniae strains with the KL108 type capsular polysaccharide, has been isolated from the wastewater. The sequence of the bactriophage genome has been defined, the biological properties have been investigated, and the genetic features have been described.


Sign in / Sign up

Export Citation Format

Share Document