scholarly journals Arnebia euchroma, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves

2021 ◽  
Vol 12 ◽  
Author(s):  
Rahul Jain ◽  
Priyanka Bhardwaj ◽  
Shiv Shanker Pandey ◽  
Sanjay Kumar

The endophytic mutualism of plants with microorganisms often leads to several benefits to its host including plant health and survival under extreme environments. Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme cold and arid environments in the Himalayas. The present study was conducted to decipher the cultivable endophytic diversity associated with the leaf and root tissues of A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated and characterized at the molecular level. Among these, Proteobacteria was the most abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%) and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%) dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal communities as compared to root tissues. The abilities of endophytes to display plant growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were also investigated under in vitro conditions. Of all the endophytes, 21.51% produced ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34% produced siderophores. Six bacteria and one fungal endophyte displayed all the five PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial endophytes with multiple growth-promoting traits. These endophytes can be used for improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.

2017 ◽  
Vol 9 (3) ◽  
pp. 1310-1316
Author(s):  
Gurjot Kaur ◽  
Poonam Sharma ◽  
Deepika Chhabra ◽  
Kailash Chand ◽  
Gurjit Singh Mangat

The present investigation was carried out to exploit bacterial endophytes associated with root and leaf tissue of rice plant for plant growth promotion (PGP) and colonization study in vitro. Total 10 endophytic bacterial isolates (Pseudomonas sp.) were evaluate for PGP traits like P solubilization, production of Indole acetic acid (IAA), siderophore, ACC deaminase, protease, cellulase, fluorescent pigment, urease and denitrification activity. Out of 10 endophytic bacteria 30 %, 60 %, 20 %, 70 %, 10 % and 10 % were positive for siderophore, protease, cellulase, fluorescent pigment, urease and denitrification respectively. Maximum IAA production was recorded with isolate LRBLE7 (18.8 μgml-1) followed by LRBRE4 (16.0 μgml-1) and maximum P-solubilization was recorded with isolate LRBRE4 (5.8 mg 100 ml-1) followed by LRBLE7 (4.4 mg 100 ml-1). ACC deaminase production was recorded with isolate LRBLE6 (O.D=0.352 nm) followed by LRBRE5 (O.D=0.324nm). Three potential isolates (LRBRE4, LRBRE6 and LRBLE7) were selected on the basis of multiple PGP traits and were subjected to colonization study of rice seedling in vitro. Potential bacterial isolates can be exploited for improving growth and productivity in rice under sustainable management system.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marco Fusi ◽  
Ameur Cherif ◽  
Ayman Abou-Hadid ◽  
...  

Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presentedin vitromultiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1250
Author(s):  
Markéta Kulišová ◽  
Maria Vrublevskaya ◽  
Petra Lovecká ◽  
Blanka Vrchotová ◽  
Milena Stránská ◽  
...  

Endophytes are microorganisms that live asymptomatically inside plant tissues. They are beneficial to their host in many aspects, especially as a defense against foreign phytopathogens through the production of a variety of metabolites. These substances can serve as sources of new natural products for medicinal, agricultural, and industrial purposes. This article is focused on endophytic fungi from Vitis vinifera. The purpose of the research was their isolation and identification during the Vitis vinifera growing season. Subsequently, the isolates were tested for the production of biotechnologically interesting metabolites (siderophores, antioxidants, and antifungal compounds). In total, 24 endophytic fungi were isolated, the most represented genus was Cladosporium sp. The results of the test for antioxidant and antifungal properties, as well as siderophore production, have shown that the population of Vitis vinifera endophytic microscopic fungi could serve as a promising source of metabolites with a wide range of applications.


2017 ◽  
Vol 9 (1) ◽  
pp. 167-172
Author(s):  
Sonal Bhardwaj ◽  
Bhawna Dipta ◽  
Shruti Kirti ◽  
Rajesh Kaushal

In the current study, a total of 25 isolates were isolated from the rhizosphere and roots of cauliflower (Brassica oleraceavar. botrytis L.) from the vicinity of Una district of Himachal Pradesh. The isolates were tested in vitro for their ability to solubilise phosphorous and produce siderophore, indole acetic acid (IAA), hydrogen cyanide (HCN) and antifungal metabolites against the soil borne pathogens. Results revealed that out of 25, only 4 rhizospheric isolates (SB5, SB11, SB8 and SB10) have maximum plant growth promoting attributes. The isolates were identified as Bacillus sp. on the basis of Bergey’s manual of systematic bacteriology. The isolate SB11 recorded highest phosphate solubilizing efficiency in solid medium (109.09%) and in liquid medium (350μg/ml). Maximum production of IAA (51.96μg/ml), siderophore (91.41%) and HCN were also observed for the same isolate. Further-more, the isolate SB11 produced highest antifungal metabolite production against Rhizoctoniasolani(37.11%), Sclerotiniasclerotiorum(41.11%), and Pythium sp. (71.11%) causing root rot, stalk rot and damping off diseases in cauliflower, respectively. The selected isolate (SB11) showed optimum growth at a pH of 7.0, 35°C temperature and 2% NaCl. On the basis of multifarious PGP-traits the SB11 isolate has tremendous potential to be used as a bioferti-lizer/bioprotectant for growth promotion and natural protection of cauliflower under low hill conditions of Himachal Pradesh.


2020 ◽  
Author(s):  
Shawn M. Higdon ◽  
Tania Pozzo ◽  
Emily J. Tibbett ◽  
Colleen Chiu ◽  
Richard Jeannotte ◽  
...  

AbstractSierra Mixe maize is a geographically remote landrace variety grown on nitrogen-deficient fields in Oaxaca, Mexico that meets its nutritional requirements without synthetic fertilizer by associating with free-living diazotrophs comprising the microbiota of its aerial root mucilage. We selected nearly 500 diazotrophic bacteria isolated from Sierra Mixe maize mucilage and sequenced their genomes. Comparative genomic analysis demonstrated that isolates represented diverse genera and possessed multiple marker genes for mechanisms of direct plant growth promotion (PGP). In addition to nitrogen fixation, we examined deamination of 1-amino-1-cyclopropanecarboxylic acid, biosynthesis of indole-3-acetic acid, and phosphate solubilization. Implementing in vitro colorimetric assays revealed each isolate’s potential to confer the alternative PGP activities that corroborated genotype and pathway content. We examined the ability of mucilage diazotrophs to confer PGP by direct inoculation of clonally propagated potato plants in planta, which led to the identification of bio-stimulant candidates that were tested for PGP by inoculating a conventional maize variety. The results indicate that, while many diazotrophic isolates from Sierra Mixe maize possessed genotypes and in vitro phenotypes for targeted PGP traits, a subset of these organisms promoted the growth of potato and conventional maize using multiple promotion mechanisms.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1493
Author(s):  
Sandra Díaz-González ◽  
Patricia Marín ◽  
Roberto Sánchez ◽  
Cristina Arribas ◽  
John Kruse ◽  
...  

Facing rising global food demand in a sustainable way is a great challenge of modern agriculture. Thus, the increase of crop productivity and resilience in an adverse climate scenario is urgently needed. Fungal endophytes have been described as potential biological tools to improve plant yield and tolerance to biotic and abiotic stresses; however, their application in agriculture needs further research. The fungal endophyte Colletotrichum tofieldiae strain Ct0861 establishes a mutualistic interaction with Arabidopsis thaliana, promoting plant growth and silique production at low phosphate conditions. Until now, its ability to colonize and confer benefits to other plant species remained unexplored. Here, we show that Ct0861 colonizes and promotes growth in vitro of maize (Zea mays L.) and tomato (Solanum lycopersicum L.) seedlings, resulting in significantly larger shoot length and weight. Greenhouse and field experiments in optimal nutritional conditions showed an increase between 12% and 22% of yield in both tomato and maize. The inoculated plants were not suffering from phosphate starvation, which points at different modes of action not elucidated yet. These results indicate that the beneficial effect of Ct0861 may extend to other plant species of economic importance, making Ct0861 a potentially valuable inoculant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanu Magotra ◽  
Nancy Bhagat ◽  
Sheetal Ambardar ◽  
Tahir Ali ◽  
Barbara Reinhold Hurek ◽  
...  

AbstractNative Bacillus sp. strain D5 coded as (Bar D5) has been isolated from the saffron corm that showed plant growth promotion (PGP) properties and also inhibits the growth of corm rot causing Fusarium oxysporum R1 (Fox R1) in-vitro. Bar D5 was more efficient PGP bacterium in comparison to earlier reported native bio-formulations by our group. Pot assays and field evaluation of Bar D5 confirmed its in-vivo efficacy for PGP traits and biocontrol activity as well. Pot trials were followed by field trials at traditional (Kishtwar) and non-traditional (R.S Pura) saffron cultivation areas in Jammu and Kashmir. At both places, Bar D5 bio-formulation treatment led to the increase in root number & length, shoot number & length, flower number and number & weight of daughter corms. Additionally, it also decreased the corm rot disease incidence significantly. Priming of corms with bio-formulation resulted in the reduction of pathogenic fungal load by three fold at the depth of corm sowing from ground level. The shelf life/viability of Bar D5 based bio-formulation was found to be 52% (viable spores) for one year at room temperature. Draft genome sequence of Bar D5 revealed the presence of genes necessary for PGP and biocontrol activity. Further, confirmation of gene sequences and annotation was done by amplification, re-sequencing and mapping of PGP and biocontrol genes on draft genome. Bar D5 based bio-formulation can be provided to companies/researchers interested in saffron cultivation or bio-formulation production for commercial exploitation, since saffron is grown as revenue crop across continents. The present study bridges the gap between genomics and its field application.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
pp. 14 ◽  
Author(s):  
Kalaiselvi Senthil ◽  
Murukarthick Jayakodi ◽  
Pankajavalli Thirugnanasambantham ◽  
Sang Lee ◽  
Pradeepa Duraisamy ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Luis Gabriel Cueva-Yesquén ◽  
Marcela Cristina Goulart ◽  
Derlene Attili de Angelis ◽  
Marcos Nopper Alves ◽  
Fabiana Fantinatti-Garboggini

Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.


Sign in / Sign up

Export Citation Format

Share Document