scholarly journals Mutualistic Fungal Endophyte Colletotrichum tofieldiae Ct0861 Colonizes and Increases Growth and Yield of Maize and Tomato Plants

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1493
Author(s):  
Sandra Díaz-González ◽  
Patricia Marín ◽  
Roberto Sánchez ◽  
Cristina Arribas ◽  
John Kruse ◽  
...  

Facing rising global food demand in a sustainable way is a great challenge of modern agriculture. Thus, the increase of crop productivity and resilience in an adverse climate scenario is urgently needed. Fungal endophytes have been described as potential biological tools to improve plant yield and tolerance to biotic and abiotic stresses; however, their application in agriculture needs further research. The fungal endophyte Colletotrichum tofieldiae strain Ct0861 establishes a mutualistic interaction with Arabidopsis thaliana, promoting plant growth and silique production at low phosphate conditions. Until now, its ability to colonize and confer benefits to other plant species remained unexplored. Here, we show that Ct0861 colonizes and promotes growth in vitro of maize (Zea mays L.) and tomato (Solanum lycopersicum L.) seedlings, resulting in significantly larger shoot length and weight. Greenhouse and field experiments in optimal nutritional conditions showed an increase between 12% and 22% of yield in both tomato and maize. The inoculated plants were not suffering from phosphate starvation, which points at different modes of action not elucidated yet. These results indicate that the beneficial effect of Ct0861 may extend to other plant species of economic importance, making Ct0861 a potentially valuable inoculant.

Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Abdel Wahab M. Mahmoud ◽  
Emad A. Abdeldaym ◽  
Suzy M. Abdelaziz ◽  
Mohamed B. I. El-Sawy ◽  
Shady A. Mottaleb

Salinity stress is a severe environmental stress that affects plant growth and productivity of potato, a strategic crop moderately sensitive to saline soils. Limited studies are available on the use of combined nano-micronutrients to ameliorate salinity stress in potato plants (Solanum tuberosum L.). Two open field experiments were conducted in salt-affected sandy soil to investigate plant growth, physiology, and yield of potato in response to soil salinity stress under single or combined application of Zn, B, Si, and Zeolite nanoparticles. It was hypothesized that soil application of nanoparticles enhanced plant growth and yield by alleviating the adverse impact of soil salinity. In general, all the nano-treatments applications significantly increased plant height, shoot dry weight, number of stems per plant, leaf relative water content, leaf photosynthetic rate, leaf stomatal conductance, chlorophyll content, and tuber yield, as compared to the untreated control. Furthermore, soil application of these treatments increased the concentration of nutrients (N, P, K, Ca, Zn, and B) in plant tissues, leaf proline, and leaf gibberellic acid hormone (GA3) in addition to contents of protein, carbohydrates, and antioxidant enzymes (polyphenol oxidase (PPO) and peroxidase (POD) in tubers. Compared to other treatments, the combined application of nanoparticles showed the highest plant growth, physiological parameters, endogenous elements (N, P, K, Ca, Zn, and B) and the lowest concentration of leaf abscisic acid (ABA) and transpiration rate. The present findings suggest that soil addition of the aforementioned nanoparticles can be a promising approach to improving crop productivity in salt-affected soils.


Author(s):  
Yesica C Menendez ◽  
Diego H Sanchez ◽  
Rod J Snowdon ◽  
Deborah P Rondanini ◽  
Javier F Botto

Abstract Plant density defines vegetative architecture and competition for light between individuals. Brassica napus (canola), as a model system of indeterminate growth, presents a radically different plant architecture compared to traditional crops commonly cultivated at high density. Using a panel of 152 spring-type canola accessions and a double haploid (DH) population of 99 lines from a cross between Lynx and Monty, we performed Genome-Wide-Analysis-Studies (GWAS) and Quantitative Trait Locus (QTL) mapping for 12 growth and yield traits at two contrasting plant densities (15 and 60 plants m -2). We revealed mostly novel associations by GWAS (19) and QTLs (11) for growth and yield traits being the most significant for flowering, biomass, rosette height, silique and seed number, and grain yield; often representing density-independent signals although we also uncovered some density-dependent associations typically mapping at low density. Further RNA-seq transcriptomics revealed distinctive latent gene regulatory responses to simulated shade between Lynx and Monty. Given the phylogenetic relatedness, we additionally used Arabidopsis thaliana aiming at testing genes to validate density effects of homologous counterparts mapping into relevant rapeseed QTLs. Our results suggest that TCP1 may promote the growth independently of plant neighbors, while HY5 could increase biomass and seed yield specifically at high plant density. For flowering time, the observations in tested mutants suggested that the corresponding genes may plausibly contribute to promote flowering in plant-density dependent (i.e., PIN) and independent (i.e., FT, HY5 and TCP1) manner. This work underscores the advantages of using agronomic field experiments together with genetic and transcriptomic approaches to decipher quantitative complex traits that potentially mediate superior crop productivity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256450
Author(s):  
Muhammad Younas ◽  
Huasong Zou ◽  
Tasmia Laraib ◽  
Waseem Abbas ◽  
Muhammad Waqar Akhtar ◽  
...  

Food production and waste recycling are the two major issues faced globally with rapidly increasing population. Recycling organic wastes to crop amendments could be a possible solution to these issues. Earthworms transfer organic waste to compost, which is used to grow crops and increase crop productivity. This study assessed the impact of vermicompost produced from the residues of six desert plant species, i.e., (Ziziphus mauritiana, Aerva javanica, Calligonum comosum, Sacchrum benghalens, Calligonum polygonoides and Prosopis cineraria) combined with farmyard manure (5 t ha-1) on growth, yield and photosynthetic activity of maize crop. Earthworm species Eisenia fetida (Savigny, 1826) was used to prepare vermicomposting of all tested plant species. The desert species were collected from natural habitats, chopped, dried, mixed with FYM and then earthworms were released to prepare the vermicompost. The earthworms were excluded twenty days after release and resultant was considered as compost and used in the experiment. Results revealed that application of P. cineraria vermicompost resulted in the highest plant height (75.33 cm), stem diameter (22.66 mm), cob length (17.66 cm), number of grains/cob (374.67), 1000-grain weight (260.41 g) and grains yield (3.20 t/ha). Application of P. cineraria vermicompost resulted in the highest uptake of macronutrients, i.e., N (91.01%), P (22.07%), K (80.41%), micronutrients, i.e., Fe (19.07 ppm), Zn (40.05 ppm), and phenolic contents (150). Application of P. cineraria vermicompost also resulted in the highest quantum photosynthetic yield (0.42 mole C/mole of photon), chlorophyll florescence (355.18 moles of photon m-2s-1) and electron transport rate (310.18 micro mole m-2s-1). It is concluded that vermicomposting has the potential to improve growth and yield of maize crop. Particularly, application of vermicompost obtained from P. cineraria can be used to improve the growth and yield of maize crop. Nonetheless, field trials are necessary for a wide scale recommendation.


2020 ◽  
Vol 23 (02) ◽  
pp. 373-380
Author(s):  
Abdelraheim Mohamed Said Ahmed

Sandy desert soil in Sudan are characterised by low content of organic matter, small water holding capacity and low crop productivity. Methods to enhance crop productivity on these environments, such as land application of composts, are of great importance. Field experiments were conducted on a sandy soil to determine the effects of two types of composted manures on growth and yield of two sorghum varieties grown under rainfed conditions. Two sorghum cultivars (Butana and Arfa Gadmak were sown under chicken manure (CM) compost (5 t ha-1), CM compost with NPK (36 kg ha-1), farm manure (FM) compost (20 t ha-1), FM compost with NPK (36 kg ha-1), CM compost with FM compost (1:1, wt/wt, 12.5 t ha-1), CM and FM composts with NPK (36 kg ha-1), only NPK (36 kg ha-1) and control (no composts or NPK). Application of composts increased organic soil carbon by 50% and available phosphorous (P) between 43 to 105%, whereas, pH and bulk density were decreased by 2 and 6%, respectively. Soil moisture contents in compost treated plots were 56–98% higher than control plots. Mixing compost with NPK increased leaf area index over NPK alone by 28% but the highest values were found in plots treated with chicken compost or integrated with NPK compared to NPK application alone. Incorporation of compost increased dry matter yield compared to control by 17–53% and increased grain yield by 1.8 to 3.1 fold in both sorghum varieties. Grain yield from plots treated with NPK, sole chicken compost or combined with NPK were similar for both varieties in both seasons. In general, the trend of grain yield of sorghum was in the order of NPK = chicken compost with NPK = chicken compost = farm manure compost with NPK  mixed compost with NPK = farm manure  control. In conclusion, integrating composts with NPK improved fertility of sandy soils, sorghum growth and yield. © 2020 Friends Science Publishers


2020 ◽  
Vol 19 (2) ◽  
pp. 55 ◽  
Author(s):  
Lech Gałęzewski

Background. Because of its relatively low soil requirements and resistance to abiotic stress spring triticale is potentially a good component of mixtures (intercropping). The technologically easiest to use type of this agricultural method, i.e. mixed intercropping, despite having many advantages is not, unfortunately, gaining in importance due to problems related to crop protection and the variable composition of yield. An alternative is strip intercropping, which combines the advantages of pure sowing and intercropping. The production value of such cultivation depends on mutual interactions at the junction of neighbouring rows of different plant species. The aim of the undertaken experiments was to find out the response of spring triticale to the neighbouring occurrence of wheat, barley, pea and yellow lupine and to estimate the production effects of strip intercropping of triticale in the vicinity of plants of these species. Material and methods. This study uses the results of field experiments conducted as part of research on mixed sowings carried out in 2008–2010 in Mochełek near Bydgoszcz (53o13’ N; 17o51’ E). The experimental factor was the location of a plant row, within a strip, for the first four rows into the strip from the neighbouring species. The first row (contact row) was 12.5 cm away from the first row of the neighbouring species. The experimental unit was subsequent plant rows each four metres long. Results. Proximity of spring wheat, spring barley and pea was unfavourable for the growth and yield of spring triticale, especially in the row directly adjacent to a stand of the indicated species. The estimated reduction in triticale yield in strip intercropping, with three-meter wide strips in the two-sided neighbourhood of wheat, barley and pea, would amount to 2.67%, 4.85% and 4.36%, respectively. On the other hand, the proximity of yellow lupine resulted in a slight increase in the plant mass, including straw, the number of grains per spike and in grain yield, but only in the first row. The estimated increase in the yield of spring triticale grown in strip intercropping with yellow lupine, in 3-m-wide strips, was small and only amounted to 1.45%. Conclusion. The selection of plant species to neighbour with spring triticale in strip intercropping had a significant impact on the effect of spring triticale cultivation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rahul Jain ◽  
Priyanka Bhardwaj ◽  
Shiv Shanker Pandey ◽  
Sanjay Kumar

The endophytic mutualism of plants with microorganisms often leads to several benefits to its host including plant health and survival under extreme environments. Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme cold and arid environments in the Himalayas. The present study was conducted to decipher the cultivable endophytic diversity associated with the leaf and root tissues of A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated and characterized at the molecular level. Among these, Proteobacteria was the most abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%) and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%) dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal communities as compared to root tissues. The abilities of endophytes to display plant growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were also investigated under in vitro conditions. Of all the endophytes, 21.51% produced ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34% produced siderophores. Six bacteria and one fungal endophyte displayed all the five PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial endophytes with multiple growth-promoting traits. These endophytes can be used for improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.


Author(s):  
Jin-Yue Bian ◽  
Yu-Lan Fang ◽  
Qing Song ◽  
Mei-Ling Sun ◽  
Ji-Yun Yang ◽  
...  

Anthracnose caused by Colletotrichum gloeosporioides is one of most serious fungal diseases on Chinese fir (Cunninghamia lanceolata). Eight fungal endophytes were isolated from a young heathy branch of Chinese fir and screened against the pathogen in vitro. One isolate, designated as SMEL1 and subsequently identified as Epicoccum dendrobii based on morphological and phylogenetic analyses, suppressed mycelial growth of C. gloeosporioides on dual culture plates. Additionally, the metabolites of E. dendrobii significantly decreased the biomass of C. gloeosporioides. E. dendrobii was able to enter the internal tissues of the host plant via stomatal cells. The metabolites of E. dendrobii significantly inhibited conidial germination and appressorium formation, which at least partly explained why the endophyte significantly inhibited lesion development caused by C. gloeosporioides on various host plants. We further confirmed that some components with antifungal activity could be extracted from E. dendrobii using ethyl acetate as an organic solvent. To our knowledge, this is the first report of E. dendrobii as a potential biocontrol agent against a fungal phytopathogen.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Deepak Bokati ◽  
José Herrera ◽  
Ravin Poudel

Root-associated fungal endophytes are vital component of root microbiome as some mitigate their host’s abiotic and biotic stress. We characterized root-associated fungal endophytes in cereal grains and their progenitors grown on two different soil-types. We aimed at determining how clay and desert soil affects the colonization of root fungal community. Both culture-dependent and culture-independent methods were employed to identify endophytes that successfully colonized greenhouse-grown host plants. The Internal Transcriber Spacer region of fungal ribosomal DNA was utilized for identification purposes. This study revealed soil as a prominent factor influencing the composition of microfungal communities inhabiting the roots of maize (Zea mays subsp. mays) and its conspecific progenitor, teosinte (Zea mays subsp. parviglumis). Similar results were found in wheat (Triticum aestivum subsp. aestivum) and its progenitor (Triticum monococcum subsp. monococcum). The multidimensional comparisons of Morisita-Horn similarity values of fungal colonists of various host plant taxa indicated that soil plays a primary role in shaping the root fungal community; a secondary effect was plant host identity, even when the plant host is a conspecific. Future studies focused on characterizing root endophytes in other cereal grains, and studying the effect of edaphic factors on fungal colonization, can ultimately contribute to crop productivity.


Author(s):  
Thang Thanh Tran ◽  
Hoang Ngo Phan ◽  
Tuan Minh Nguy ◽  
Huong Thanh Tran

Tomato is one of the most popular foods in the world. However, drought stress has strongly decreased the growth and yield of tomatoes. Therefore, the study on drought-tolerant tomatoes is essential. In this paper, tomato cultivar TN704, which is popularly grown in Vietnam's Southeast and Vietnam's Mekong Delta was selected. The combination of auxin (IAA, indoleacetic acid) and cytokinin (zeatin) at different concentrations was investigated to determine the effective regeneration media. Then, the drought pretreatment was applied to obtain drought-tolerant shoots. The drought tolerance of regenerated shoots was checked by culture in the drought stress condition after two generations (F1 and F2). The physiological and biochemical changes of regenerated shoots in the drought stress condition were analyzed. The MS 1 2 medium supplemented with 0.2 mg/L IAA and 0.5 mg/L zeatin was the effective medium for in vitro shoot regeneration from tomato leaves. The drought pretreatment (MS 1 2 with 20 g/L mannitol) increased the number of regenerated shoots which can develop in the drought stress condition. The regenerated shoots in the F1 and F2 generations grew strongly under drought conditions. The content of chlorophyll, carotenoid and proline, the intensity of respiration and photosynthesis, and the activity of auxin and cytokinin in leaves of F1 and F2 plant were higher than the control.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


Sign in / Sign up

Export Citation Format

Share Document