scholarly journals Emergence of IncHI2 Plasmids With Mobilized Colistin Resistance (mcr)-9 Gene in ESBL-Producing, Multidrug-Resistant Salmonella Typhimurium and Its Monophasic Variant ST34 From Food-Producing Animals in Italy

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Lavinia Diaconu ◽  
Patricia Alba ◽  
Fabiola Feltrin ◽  
Paola Di Matteo ◽  
Manuela Iurescia ◽  
...  

A collection of 177 genomes of Salmonella Typhimurium and its monophasic variant isolated in 2014–2019 from Italian poultry/livestock (n = 165) and foodstuff (n = 12), previously screened for antimicrobial susceptibility and assigned to ST34 and single-locus variants, were studied in-depth to check the presence of the novel mcr-9 gene and to investigate their genetic relatedness by whole genome sequencing (WGS). The study of accessory resistance genes revealed the presence of mcr-9.1 in 11 ST34 isolates, displaying elevated colistin minimum inhibitory concentration values up to 2 mg/L and also a multidrug-resistant (MDR) profile toward up to seven antimicrobial classes. Five of them were also extended-spectrum beta-lactamases producers (blaSHV–12 type), mediated by the corresponding antimicrobial resistance (AMR) accessory genes. All mcr-9-positive isolates harbored IncHI2-ST1 plasmids. From the results of the Mash analysis performed on all 177 genomes, the 11 mcr-9-positive isolates fell together in the same subcluster and were all closely related. This subcluster included also two mcr-9-negative isolates, and other eight mcr-9-negative ST34 isolates were present within the same parental branch. All the 21 isolates within this branch presented an IncHI2/2A plasmid and a similar MDR gene pattern. In three representative mcr-9-positive isolates, mcr-9 was demonstrated to be located on different IncHI2/IncHI2A large-size (∼277–297 kb) plasmids, using a combined Illumina–Oxford Nanopore WGS approach. These plasmids were also compared by BLAST analysis with publicly available IncHI2 plasmid sequences harboring mcr-9. In our plasmids, mcr-9 was located in a ∼30-kb region lacking different genetic elements of the typical core structure of mcr-9 cassettes. In this region were also identified different genes involved in heavy metal metabolism. Our results underline how genomics and WGS-based surveillance are increasingly indispensable to achieve better insights into the genetic environment and features of plasmid-mediated AMR, as in the case of such IncHI2 plasmids harboring other MDR genes beside mcr-9, that can be transferred horizontally also to other major Salmonella serovars spreading along the food chain.

2017 ◽  
Vol 22 (31) ◽  
Author(s):  
Marta Hernández ◽  
M Rocío Iglesias ◽  
David Rodríguez-Lázaro ◽  
Alejandro Gallardo ◽  
Narciso Quijada ◽  
...  

Colistin resistance genes mcr-3 and mcr-1 have been detected in an Escherichia coli isolate from cattle faeces in a Spanish slaughterhouse in 2015. The sequences of both genes hybridised to same plasmid band of ca 250 kb, although colistin resistance was non-mobilisable. The isolate was producing extended-spectrum beta-lactamases and belonged to serotype O9:H10 and sequence type ST533. Here we report an mcr-3 gene detected in Europe following earlier reports from Asia and the United States.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


2016 ◽  
Vol 21 (2) ◽  
Author(s):  
Ursel Heudorf ◽  
Bernhard Krackhardt ◽  
Maria Karathana ◽  
Niels Kleinkauf ◽  
Christian Zinn

Many refugees arriving in Germany originate or have travelled through countries with high prevalence of multidrug-resistant Gram-negative organisms. Therefore, all unaccompanied refugee minors (<18 years-old) arriving in Frankfurt am Main between 12 October and 6 November 2015, were screened for multidrug-resistant Enterobacteriaceae in stool samples. Enterobacteriaceae with extended spectrum beta-lactamases (ESBL) were detected in 42 of 119 (35%) individuals, including nine with additional resistance to fluoroquinolones (8% of total screened), thus exceeding the prevalences in the German population by far.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Kotsoana Peter Montso ◽  
Sicelo Beauty Dlamini ◽  
Ajay Kumar ◽  
Collins Njie Ateba

Background. Extended spectrum beta-lactamases (ESBLs) producing Enterobacteriaceae cause severe infections in humans which leads to complicated diseases. There is increasing evidence that cattle contribute to the development and spread of multidrug resistant pathogens and this raises public health concern. Despite this, data on the concurrence of ESBL producing pathogens in cattle, especially in the North-West province are rare. Therefore, the aim of the present study was to isolate, identify and characterise ESBL producing E. coli and K. pneumoniae species from cattle faeces and raw beef samples. Results. A total of 151 samples comprising 55 faeces samples and 96 raw beef samples were collected and 259 nonreplicative potential isolates of Enterobacteriaceae were obtained. One hundred and ninety-six isolates were confirmed as E. coli (114; 44%) and K. pneumoniae (82; 32%) species through amplification of uspA and uidA and ntrA gene fragments, respectively. Antimicrobial susceptibility test revealed that large proportions (66.7–100%) of the isolates were resistant to Amoxicillin, Aztreonam, Ceftazidime, Cefotaxime, and Piperacillin and were multidrug resistant isolates. Cluster analysis of antibiotic inhibition zone diameter data revealed close similarities between isolates from different sources or species thus suggested a link in antibiotic exposures. The isolates showing phenotypic resistance against ESBL antimicrobial susceptibility tests were screened for the presence of ESBL gene determinants. It was observed that 53.1% of the isolates harboured ESBL gene determinants. The blaTEM, blaSHV and blaCTX-M genes were detected in E. coli isolates (85.5%, 69.6%, and 58%, respectively) while blaCTX-M and blaOXA were detected in K. pneumoniae (40% and 42.9%, respectively). All the genetically confirmed ESBL producing E. coli and K. pneumoniae isolates were subjected to Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR analysis. Fingerprinting data revealed great similarities between isolates from different areas and sources which indicates cross-contamination between cattle and beef. Conclusion. This study revealed that cattle and its associated food products, beef in particular, harbour ESBL producing pathogens. And this warrants a need to enforce hygiene measures and to develop other mitigation strategies to minimise the spread of antibiotic resistant pathogens from animals to human.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
René Dembélé ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. Methods Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. Results The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX−M gene and the qnrB gene simultaneously. Conclusions This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.


2020 ◽  
Vol 14 (8) ◽  
pp. 2746-2757
Author(s):  
Souleymane Soré ◽  
Yacouba Sawadogo ◽  
Juste Isidore Bonkoungou ◽  
Sephora P. Kaboré ◽  
Saidou Béogo ◽  
...  

Extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-PE) represent a threat for failure of empirical antibiotic therapy and are associated with high mortality, morbidity and expenses. The aims of this study was to determine the prevalence of ESBL-PE and multidrug resistant enterobacteria (MDR), enterobacteria profil, investigate the associated resistance in wastewater and salads. After wastewater and salad sampling, enterobacteria was isoled on (EMB + 4μg / L cefotaxim). The stains of Enterobacteriaceae were identified by using biochemical methods and confirmed as ESBL by double-disc synergy test (amoxicillin/clavulanic acid with cefotaxime 30 μg, ceftazidime 30 μg and ceftriaxone 30 μg). Finally, the associated resistance was investigated by testing the susceptibility of the strains by the disc diffusion method. Global prevalence of ESBL-PE was 53.92% (95% CI: 48,2-59,5) (153/293), 61.11% from wastewater and 42.47% from salads. Major ESBL-E was Escherichia coli (73.44%), followed by Klebsiella pneumoniae (21.88%). Resistance to the aminoglycoside , fluroquinolonones and sulfonamides classes were dominant, observed in 53,83%, 93,86% and 98,95% of the isolates, respectively. The frequence of MDR was hight to channel1 (32,40%) and channel2 (26,26%). This study reports very worrying results. There is an urgent need to develop measures to monitor the spread of these multidrug-resistant strains.Keywords: Wastewater, ESBL-PE, Salads, Ouagadougou.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Frazer McCuaig ◽  
Jody Winter ◽  
Jonathan Thomas ◽  
Gareth McVicker ◽  
Lesley Hoyles

Klebsiella spp. are associated with 3 to 7% of nosocomial infections and can be responsible for a range of conditions including pneumonia, bloodstream infections, meningitis, and necrotizing enterocolitis in infants. The role of Klebsiella pneumoniae in causing disease is well-characterised but, to date, the closely related species Klebsiella oxytoca has not received the same attention, despite often encoding extended-spectrum beta-lactamases and carbapenemases in clinical settings. K. oxytoca is the causative agent of Clostridiodes difficile-negative antibiotic-associated haemorrhagic colitis, a rare condition seen in some individuals receiving antibiotics. Whole-genome sequence analyses have shown K. oxytoca to be a complex comprising at least six species (K. oxytoca, K. michiganensis, K. grimontii, K. huaxiensis, ‘K. pasteurii’, ‘K. spallanzanii’). Our study aims to better characterise the K. oxytoca complex using a polyphasic approach. Preliminary investigations into the genomes of three K. michiganensis clinical isolates revealed the presence of a plasmid-borne ccdABlocus. ccdAB is a toxin-antitoxin (TA) system known to maintain plasmids in other pathogenic enterobacteria. We aim to functionally validate this TA system by cloning and conducting toxicity assays on the CcdB toxin, and cloning and assessing the ability of CcdA to function as an antidote. We also aim to sequence and generate Illumina/Oxford Nanopore hybrid genome assemblies of a larger collection of K. oxytoca complex clinical isolates and investigate their plasmids and TA systems in the same manner.


2019 ◽  
Vol 12 (1) ◽  
pp. 449-454
Author(s):  
Debora Vandresen ◽  
Maria Helena B. Werlang ◽  
Mirian Carla B. Silva ◽  
Juliana S. Link ◽  
Paulo Cezar N. Fortes

Background: Hospitalised patients are often surrounded by microorganisms, and antibiotic-resistant pathogens are a major and growing threat to public health. Objective: This study aimed to investigate the epidemiology and the risk factors for colonisation by multidrug-resistant organisms (MDROs) in a Brazilian hospital. Methods: Patients in the Intensive Care Unit (ICU) who underwent nasal and rectal swab cultures for the surveillance of colonisation by MDROs were evaluated in a retrospective study. MDROs were determined by routine microbiological cultures. Results: Of the 785 patients included in this study, 86 presented positive results for MDRO colonisation. Overall, the most frequently isolated organism was Klebsiella pneumoniae (41.9%), followed by Escherichia coli (33.7%). The main type of resistance was the production of extended-spectrum beta-lactamases (ESBL). The prevalence of MDRO infections was significantly associated with the patient's origin (community or hospital-acquired). Having been submitted to previous antimicrobial drug therapy was significantly associated with MDRO infection (relative risk [RR]: 4.02 [2.60 - 6.23]). Conclusion: MDRO ICU colonisation was variable, with similar frequencies as other centres, and important factors, including previous hospital stay and antibiotic use, were closely related to MDRO colonisation. Therefore, control interventions should reduce their rates, especially considering the particularities of each geographic centre.


2020 ◽  
Author(s):  
Rene DEMBELE ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso.Methods: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains.Results: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX-M gene and the qnrB gene simultaneously.Conclusions: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.


Sign in / Sign up

Export Citation Format

Share Document