scholarly journals Antimicrobial Resistance Profiling and Molecular Epidemiological Analysis of Extended Spectrum β-Lactamases Produced by Extraintestinal Invasive Escherichia coli Isolates From Ethiopia: The Presence of International High-Risk Clones ST131 and ST410 Revealed

2021 ◽  
Vol 12 ◽  
Author(s):  
Abebe Aseffa Negeri ◽  
Hassen Mamo ◽  
Jyoti M. Gurung ◽  
A. K. M. Firoj Mahmud ◽  
Maria Fällman ◽  
...  

The treatment of invasive Escherichia coli infections is a challenge because of the emergence and rapid spread of multidrug resistant strains. Particular problems are those strains that produce extended spectrum β-lactamases (ESBL’s). Although the global characterization of these enzymes is advanced, knowledge of their molecular basis among clinical E. coli isolates in Ethiopia is extremely limited. This study intends to address this knowledge gap. The study combines antimicrobial resistance profiling and molecular epidemiology of ESBL genes among 204 E. coli clinical isolates collected from patient urine, blood, and pus at four geographically distinct health facilities in Ethiopia. All isolates exhibited multidrug resistance, with extensive resistance to ampicillin and first to fourth line generation cephalosporins and sulfamethoxazole-trimethoprim and ciprofloxacin. Extended spectrum β-lactamase genes were detected in 189 strains, and all but one were positive for CTX-Ms β-lactamases. Genes encoding for the group-1 CTX-Ms enzymes were most prolific, and CTX-M-15 was the most common ESBL identified. Group-9 CTX-Ms including CTX-M-14 and CTX-27 were detected only in 12 isolates and SHV ESBL types were identified in just 8 isolates. Bacterial typing revealed a high amount of strains associated with the B2 phylogenetic group. Crucially, the international high risk clones ST131 and ST410 were among the sequence types identified. This first time study revealed a high prevalence of CTX-M type ESBL’s circulating among E. coli clinical isolates in Ethiopia. Critically, they are associated with multidrug resistance phenotypes and high-risk clones first characterized in other parts of the world.

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1374
Author(s):  
Naiyaphat Nittayasut ◽  
Jitrapa Yindee ◽  
Pongthai Boonkham ◽  
Teerapong Yata ◽  
Nipattra Suanpairintr ◽  
...  

Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016–2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6′)-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.


2020 ◽  
Vol 8 (10) ◽  
pp. 1626
Author(s):  
Mahfouz Nasser ◽  
Snehal Palwe ◽  
Ram Naresh Bhargava ◽  
Marc G. J. Feuilloley ◽  
Arun S. Kharat

The production of diverse and extended spectrum β-lactamases among Escherichia coli and ESKAPE pathogens is a growing threat to clinicians and public health. We aim to provide a comprehensive analysis of evolving trends of antimicrobial resistance and β-lactamases among E. coli and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine to bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) in the Arabian region. A systematic review was conducted in Medline PubMed on papers published between January 2000 and February 2020 on countries in the Arab region showing different antibiotic resistance among E. coli and ESKAPE pathogens. A total of n = 119,144 clinical isolates were evaluated for antimicrobial resistance in 19 Arab countries. Among these clinical isolates, 74,039 belonged to E. coli and ESKAPE pathogen. Distribution of antibiotic resistance among E. coli and ESKAPE pathogens indicated that E. coli (n = 32,038) was the predominant pathogen followed by K. pneumoniae (n = 17,128), P. aeruginosa (n = 11,074), methicillin-resistant S. aureus (MRSA, n = 4370), A. baumannii (n = 3485) and Enterobacter spp. (n = 1574). There were no reports demonstrating Enterococcus faecium producing β-lactamase. Analyses revealed 19 out of 22 countries reported occurrence of ESBL (Extended-Spectrum β-Lactamase) producing E. coli and ESKAPE pathogens. The present study showed significantly increased resistance rates to various antimicrobial agents over the last 20 years; for instance, cephalosporin resistance increased from 37 to 89.5%, fluoroquinolones from 46.8 to 70.3%, aminoglycosides from 40.2 to 64.4%, mono-bactams from 30.6 to 73.6% and carbapenems from 30.5 to 64.4%. An average of 36.9% of the total isolates were reported to have ESBL phenotype during 2000 to 2020. Molecular analyses showed that among ESBLs and Class A and Class D β-lactamases, blaCTX-M and blaOXA have higher prevalence rates of 57% and 52.7%, respectively. Among Class B β-lactamases, few incidences of blaVIM 27.7% and blaNDM 26.3% were encountered in the Arab region. Conclusion: This review highlights a significant increase in resistance to various classes of antibiotics, including cephalosporins, β-lactam and β-lactamase inhibitor combinations, carbapenems, aminoglycosides and quinolones among E. coli and ESKAPE pathogens in the Arab region.


2009 ◽  
Vol 58 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Wonkeun Song ◽  
Hyukmin Lee ◽  
Kyungwon Lee ◽  
Seok Hoon Jeong ◽  
Il Kwon Bae ◽  
...  

This study was performed to assess the prevalence and genotypes of plasmid-borne extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases in Escherichia coli in Korea. A total of 576 isolates of E. coli was collected from 12 Korean hospitals during May and July 2007. A phenotypic confirmatory test detected ESBLs in 82 (14.2 %) of the 576 E. coli isolates. The most common types of ESBLs identified were CTX-M-14 (n=32) and CTX-M-15 (n=27). The prevalence and diversity of the CTX-M mutants, including CTX-M-15, CTX-M-27 and CTX-M-57, with significant hydrolytic activity against ceftazidime were increased. PCR experiments detected genes encoding plasmid-borne AmpC β-lactamases in 15/56 cefoxitin-intermediate or cefoxitin-resistant isolates, and the most common type of AmpC β-lactamase identified was DHA-1 (n=10). These data suggest that the incidence of ESBLs in E. coli has increased as a result of the dissemination of CTX-M enzymes in Korea. In addition, CTX-M-22, CTX-M-27 and CTX-M-57 have appeared in Korea.


2008 ◽  
Vol 52 (5) ◽  
pp. 1846-1849 ◽  
Author(s):  
Patricia J. Baudry ◽  
Kim Nichol ◽  
Melanie DeCorby ◽  
Laura Mataseje ◽  
Michael R. Mulvey ◽  
...  

ABSTRACT Resistance profiles were compared among 18 extended-spectrum-β-lactamase-producing (ESBL) and 27 acquired AmpC β-lactamase-producing Escherichia coli isolates collected from Canadian intensive care units from 2005 to 2006. ESBL-producing E. coli isolates were more likely to be gentamicin resistant (P < 0.03), fluoroquinolone resistant (P < 0.0001), and multidrug resistant (P < 0.0001) than AmpC-producing E. coli isolates.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dominika Ojdana ◽  
Paweł Sacha ◽  
Piotr Wieczorek ◽  
Sławomir Czaban ◽  
Anna Michalska ◽  
...  

Bacteria belonging to the Enterobacteriaceae family that produce extended-spectrum β-lactamase (ESBL) enzymes are important pathogens of infections. Increasing numbers of ESBL-producing bacterial strains exhibiting multidrug resistance have been observed. The aim of the study was to evaluate the prevalence of blaCTX-M, blaSHV, and blaTEM genes among ESBL-producing Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis strains and to examine susceptibility to antibiotics of tested strains. In our study, thirty-six of the tested strains exhibited blaCTX-M genes (blaCTX-M-15, blaCTX-M-3, blaCTX-M-91, and blaCTX-M-89). Moreover, twelve ESBL-positive strains harbored blaSHV genes (blaSHV-18, blaSHV-7, blaSHV-2, and blaSHV-5), and the presence of a blaTEM gene (blaTEM-1) in twenty-five ESBL-positive strains was revealed. Among K. pneumoniae the multiple ESBL genotype composed of blaCTX-M-15, blaCTX-M-3, blaSHV-18, blaSHV-7, blaSHV-2, and blaSHV-5 genes encoding particular ESBL variants was observed. Analysis of bacterial susceptibility to antibiotics revealed that, among β-lactam antibiotics, the most effective against E. coli strains was meropenem (100%), whereas K. pneumoniae were completely susceptible to ertapenem and meropenem (100%), and P. mirabilis strains were susceptible to ertapenem (91.7%). Moreover, among non-β-lactam antibiotics, gentamicin showed the highest activity to E. coli (91.7%) and ciprofloxacin the highest to K. pneumoniae (83.3%). P. mirabilis revealed the highest susceptibility to amikacin (66.7%).


Author(s):  
Misheck Shawa ◽  
Yoshikazu Furuta ◽  
Gillan Mulenga ◽  
Maron Mubanga ◽  
Evans Mulenga ◽  
...  

Abstract Background The epidemiology of extended-spectrum β-lactamases (ESBLs) has undergone dramatic changes, with CTX-M-type enzymes prevailing over other types. blaCTX-M genes, encoding CTX-M-type ESBLs, are usually found on plasmids, but chromosomal location is becoming common. Given that blaCTX-M-harboring strains often exhibit multidrug resistance (MDR), it is important to investigate the association between chromosomally integrated blaCTX-M and the presence of additional antimicrobial resistance (AMR) genes, and to identify other relevant genetic elements. Methods A total of 46 clinical isolates of cefotaxime-resistant Enterobacteriaceae (1 Enterobacter cloacae, 9 Klebsiella pneumoniae, and 36 Escherichia coli) from Zambia were subjected to whole-genome sequencing (WGS) using MiSeq and MinION. By reconstructing nearly complete genomes, blaCTX-M genes were categorized as either chromosomal or plasmid-borne. Results WGS-based genotyping identified 58 AMR genes, including four blaCTX-M alleles (i.e., blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55). Hierarchical clustering using selected phenotypic and genotypic characteristics suggested clonal dissemination of blaCTX-M genes. Out of 45 blaCTX-M gene-carrying strains, 7 harbored the gene in their chromosome. In one E. cloacae and three E. coli strains, chromosomal blaCTX-M-15 was located on insertions longer than 10 kb. These insertions were bounded by ISEcp1 at one end, exhibited a high degree of nucleotide sequence homology with previously reported plasmids, and carried multiple AMR genes that corresponded with phenotypic AMR profiles. Conclusion Our study revealed the co-occurrence of ISEcp1-blaCTX-M-15 and multiple AMR genes on chromosomal insertions in E. cloacae and E. coli, suggesting that ISEcp1 may be responsible for the transposition of diverse AMR genes from plasmids to chromosomes. Stable retention of such insertions in chromosomes may facilitate the successful propagation of MDR clones among these Enterobacteriaceae species.


2021 ◽  
Vol 5 (2) ◽  
pp. 1198-1207
Author(s):  
Kien Chi Le ◽  
Cuong Quoc Vo ◽  
Xuan Thanh Tran ◽  
Hung Manh Dang ◽  
Huyen Ngoc My Nguyen ◽  
...  

The global prevalence of antimicrobial resistance and Extended-Spectrum and AmpC Beta- Lactamases is continuously widespread among Escherichia coli during recent years, especially in Viet Nam. In Viet Nam, there have been researches on ESBL and AmpC-carrying E. coli inhabiting animal and human. However, studies of antimicrobial resistance in E. coli residing in pets, especially dogs are unavailable. The aim of the study was to investigate the antimicrobial sensitivity testing (AST), the resistance to 3rd cephalosporin and penicillin, also to assess the molecular detection of ESBL and Amp-C-beta -lactamase in E. coli isolates inhabiting the digestive tract of dogs at kennels Dak Lak. By using double disk synergy test (DDST), and ceftazidime-imipenem antagonism test (CIAT) to detect phenotypic characteristic of E. coli strains producing extended-spectrum beta- lactamases (ESBLs) and plasmid-mediated Amp-C-beta -lactamase, and by using multiplex polymerase chain reaction (multiplex PCR) to confirm the presence of ESBL genes (class A): blaCTX-M(1;2;8;9;25), bla TEM, bla SHV , bla OXA and genes encoding AmpC-type beta lactamase (class C): bla MOX-1;2 , bla CMY- (1;2-7;8-11) , blaLAT-(1;4) ,bla DHA-(1;2), bla ACC, bla FOX-(1-5B) ,bla MIR-1 ,bla ACT-1. From of three hundred twelve bacteial strains isolated from sixty-four rectal swabs two hundred sixty-nine E. Coli, isolates accounting for 86%, were identified and isolated, forty-four (16%) and twelve (4%) E. coli isolates encoding with ESBL and Amp-C-beta -lactamases. From molecular diagnosis with regard to phenotype, production of ESBL was shown in thirty-nine (15%) E. coli isolates and Amp-C enzymes in eight (3%) E. coli isolates. The high percentage of E. coli exhibiting antibiotic resistance revealed the accelerated overuse of antibiotics. Result of this study will contribute to the monitoring of epidemiologic resistance.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eloisa Sevilla ◽  
Raúl C. Mainar-Jaime ◽  
Bernardino Moreno ◽  
Inmaculada Martín-Burriel ◽  
Mariano Morales ◽  
...  

AbstractThe aim of this study was to estimate the prevalence of antimicrobial resistance (AMR) in Escherichia coli from a dog population in Spain and assess specific virulence factors. Susceptibility to 22 antimicrobials was tested along with the production of extended-spectrum β-lactamases (ESBLs) and AmpC in faecal isolates from 100 dogs. Virulence-related genes associated with attaching and effacing E. coli (eae, Stx1, Stx2) and extraintestinal pathogenic E. coli – ExPEC – (papC, hlyA and cnf1) were detected by PCR. At least one kind of AMR was observed in 73% of the isolates. The highest prevalences corresponded to penicillin (45%), aminoglycoside (40%) and non-extended spectrum cephalosporin (39%) classes. Multidrug resistance (MDR) was observed in 53.4% of the resistant isolates. No resistance to colistin was found. Production of ESBL/AmpC enzymes was detected in 5% of E. coli. Shiga toxin-producing E. coli were not observed, enteropathogenic E. coli were identified in only 12% of them, and ExPEC were found in 25%. Dog faeces can be a source of E. coli strains potentially presenting a threat to humans through their virulence factors or AMR. The non-hygienic keeping of animals may increase the risk of colonisation of such pathogens in humans.


2021 ◽  
Vol 77 (06) ◽  
pp. 291-294
Author(s):  
HANNA RÓŻAŃSKA ◽  
MARIA KUBAJKA ◽  
MARCIN WEINER

The aim of the study was to evaluate the occurrence of Escherichia coli producing extended-spectrum betalactamases (ESBL and/or AmpC) in the milk of cows with mastitis. A total 2,500 milk samples from mastitic cows were tested in 2014-2018. The investigations included the culture of bacteria on MacConkey agar with cefotaxime, identification with the API Rapid 32 E test, synergy disc test D68C, assessment of antimicrobial resistance by the microdilution method and confirmation of the occurrence of genes encoding ESBL and AmpC. Out of 133 isolates identified as E. coli, 87 were recognized as ESBL producers and 46 as chromosomally encoded cephalosporinase AmpC producers. The blaTEM was predominant in the ESBL producers. All 46 AmpC-positive strains had the blaCMY gene. The results confirmed the occurrence of extended-spectrum betalactamase- producing E. coli in inflammatory secretions from mastitic


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yasuo Ohkoshi ◽  
Toyotaka Sato ◽  
Yuuki Suzuki ◽  
Soh Yamamoto ◽  
Tsukasa Shiraishi ◽  
...  

In recent years, multidrug resistance ofEscherichia colihas become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screenedE. coliclinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fosgenes) and mutations inmurAthat underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter andsn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P ofuhpTthat encodes G6P transporter expression. Nucleotide sequences of theuhpT,uhpA, glpT,ptsI, andcyaAshared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction ofuhpTfunction is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations inmurA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.


Sign in / Sign up

Export Citation Format

Share Document